洛谷2344 奶牛抗议

本题地址:http://www.luogu.org/problem/show?pid=2344

题目背景

Generic Cow Protests, 2011 Feb

题目描述

约翰家的N 头奶牛正在排队游行抗议。一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为Ai,数字可正可负。
约翰希望奶牛在抗议时保持理性,为此,他打算将这条队伍分割成几个小组,每个抗议小组的理智度之和必须大于或等于零。奶牛的队伍已经固定了前后顺序,所以不能交换它们的位置,所以分在一个小组里的奶牛必须是连续位置的。除此之外,分组多少组,每组分多少奶牛,都没有限制。
约翰想知道有多少种分组的方案,由于答案可能很大,只要输出答案除以1000000009 的余数即可。

输入输出格式

输入格式:

• 第一行:单个整数N,1 ≤ N ≤ 100000
• 第二行到第N + 1 行:第i + 1 行有一个整数Ai,−10^5 ≤ Ai ≤ 10^5

输出格式:

单个整数:表示分组方案数模1000000009 的余数

输入输出样例

输入样例#1:

4
2
3
-3
1

输出样例#1:

4

说明

解释:如果分两组,可以把前三头分在一组,或把后三头分在一组;如果分三组,可以把中间两头分在一组,第一和最后一头奶牛自成一组;最后一种分法是把四头奶牛分在同一组里。

【思路】

线性DP+BIT加速+离散化。

设d[i]表示前i头奶牛的分法,则有转移方程式如下:

d[i]=sigma{ d[j]( j<i && S(j+1,i)>=0 ) }

其中sigma表示求和、S代表区间和。

如果令sum[]表示前缀和,则可以进一步得出转移条件:存在j<i且sum[j]<=sum[i]

 BIT加速:如果DP枚举到i,令C[x]表示i之前sum==x的所有d之和,则d[i]为小于sum[i]的所有d之和,可以用BIT求出小于sum[i]的区间和。

  离散化:sum的情况最多有n+1种而其范围可能很大,所以考虑对sum进行离散化。

另外有0的情况可以考虑将BIT下标进行偏移或hash到其他范围。

【代码】

 #include<cstdio>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = +;
const int MOD=; int sum[maxn],a[maxn];
int hash[maxn],cnt;
int n; int C[maxn],Max;
int lowbit(int x) { return x&(-x); }
int Sum(int x) {
x++;
int res=;
while(x>) {
res = (res+C[x])%MOD;
x-=lowbit(x);
}
return res;
}
void Add(int x,int v) {
x++;
while(x<=Max+) {
C[x] = (C[x]+v)%MOD;
x+=lowbit(x);
}
} int find(int x) {
return lower_bound(hash,hash+cnt+,x)-hash;
} int main() {
scanf("%d",&n);
FOR(i,,n) {
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
Max=max(Max,sum[i]);
}
sort(sum,sum+n+); //将0计入
hash[]=sum[];
FOR(i,,n) if(sum[i]!=sum[i-]) {
hash[++cnt]=sum[i];
}
Add(find(),);
int tot=,ans=;
FOR(i,,n) {
tot += a[i];
ans = Sum(find(tot))%MOD;
Add(find(tot),ans);
}
printf("%d\n",ans);
return ;
}

洛谷2344 奶牛抗议(DP+BIT+离散化)的更多相关文章

  1. 洛谷 2344 奶牛抗议 Generic Cow Protests, 2011 Feb

    [题解] 我们可以轻松想到朴素的状态转移方程,但直接这样做是n^2的.所以我们考虑采用树状数组优化.写法跟求逆序对很相似,即对前缀和离散化之后开一个权值树状数组,每次f[i]+=query(sum[i ...

  2. 洛谷P2344 奶牛抗议

    题目背景 Generic Cow Protests, 2011 Feb 题目描述 约翰家的N 头奶牛正在排队游行抗议.一些奶牛情绪激动,约翰测算下来,排在第i 位的奶牛的理智度为Ai,数字可正可负. ...

  3. 奶牛抗议 DP 树状数组

    奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...

  4. 洛谷P2402 奶牛隐藏

    洛谷P2402 奶牛隐藏 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地. ...

  5. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  6. 洛谷P2402 奶牛隐藏(网络流,二分答案,Floyd)

    洛谷题目传送门 了解网络流和dinic算法请点这里(感谢SYCstudio) 题目 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛 ...

  7. 洛谷P3928 Sequence2(dp,线段树)

    题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...

  8. [洛谷P1842] 奶牛玩杂技

    题目类型:贪心+证明,经典题 传送门:>Here< 题意:有\(N\)头奶牛,每个奶牛有一个重量\(W[i]\),力量\(S[i]\).定义每个奶牛的压扁程度为排在它前面的所有奶牛的总量之 ...

  9. NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...

随机推荐

  1. (转)基于PHP的cURL快速入门

    1. 原文:基于PHP的cURL快速入门 英文原文:http://net.tutsplus.com/tutorial ... for-mastering-curl/ 原文作者:Burak Guzel ...

  2. TSQL Beginners Challenge 3 - Find the Factorial

    这是一个关于CTE的应用,这里我们用CTE实现阶乘 Factorial,首先来看一个简单的小实验,然后再来看题目.有的童鞋会问怎么没有2就来3了呢,惭愧,TSQL Beginners Challeng ...

  3. VS2010调试时候未响应

    这几天使用vs2010,调试时候经常未响应,等了半天才缓过来,严重影响心情,决定解决这个问题. 搜寻一番,试着关闭VS,重新设置了vs2010的环境(在vs2010命令提示符下,执行devenv.ex ...

  4. Wireshark提示没有一个可以抓包的接口

    这是由于win下默认NPF服务是关闭的,需要以管理员的身份开启这个服务 Windows上安装wireshark时,会遇到NPF驱动无法启动的情况,一般如果采用管理员的方式就可以正常启动,或者是将NPF ...

  5. xargs rm -rf 与 -exec rm

    # find ./ -exec rm {} \; # find ./ | xargs rm -rf 两者都可以把find命令查找到的结果删除,其区别简单的说是前者是把find发现的结果一次性传给exe ...

  6. offie2010设置前两页和后面显示不同页码的方法

    1.在需要设置的第二页文档后面点击一下,让光标进入,再菜单上找到"页面布局"—“分栏符”—“下一页”(如图) 2.插入—页码—页面底端(如图) 3.点击页码附近的—“链接到前一页面 ...

  7. [转]单例模式与静态变量在PHP中

    在PHP中,没有普遍意义上的静态变量.与Java.C++不同,PHP中的静态变量的存活周期仅仅是每次PHP的会话周期,所以注定了不会有Java或者C++那种静态变量. 所以,在PHP中,静态变量的存在 ...

  8. OpenCV中Mat的详解

    每次碰到Mat都得反复查具体的用法,网上的基础讲解不多,难得看到一篇,赶快转来收藏~ 原文地址:http://www.opencvchina.com/thread-1039-1-1.html 目标 我 ...

  9. SGU 175.Encoding

    Solution: 简单题. 答案初始化为1. 从给定的n,q往下推出新的n和q,如果q是在右半边,答案加上 n-n/2. 一直到推到n==1. code: #include <iostream ...

  10. URPF 简单流程

    主要功能是防止基于源地址欺骗的网络攻击. 路由器接口一旦使能URPF功能,当该接口收到数据报文时,首先会对数据报文的源地址进行合法性检查,对于源地址合法性检查通过的报文,才会进一步查找去往目的地址的转 ...