斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围内的非负整数,请设计一个高效算法,计算第n项F(n)。第一个斐波拉契数为F() = 。 给定一个非负整数,请返回斐波拉契数列的第n项,为了防止溢出,请将结果Mod 。
斐波拉契数列的计算是一个非常经典的问题,对于小规模的n,很容易用递归的方式来获取,对于稍微大一点的n,为了避免递归调用的开销,可以用动态规划的思想轻松获得,时间复杂度为O(n),空间复杂度为O(1). 但是对于更大规模,比如上题中的n的范围,动态规划所花的时间也不少了。好在之前在Code Hunt上碰倒这个问题。
考虑下面三个矩阵:
F(n) F(n-1) 1,1 F(n-1) F(n-2)
F(n-1) F(n-1) 与 1,0 与 F(n-2) F(n-3)
分别设为S(n), M, S(n-1). S(n) = M x S(n-1).
于是
S(n) = M^(n-1) x S(1) = M^n; (关系1)
再来看看,若n为32位正整数,设c[32]为其二进制序列的逆序列, c[i] =0,1;
n = Σ(c[i]*2^i), i=0,...,31;
所以只要我知道M的2^i 方幂(i=0,1,2,...,31),我们可以轻松计算出S(n)
而计算出32个M的幂需要做32次矩阵乘法,而计算M^n次方,即M^( Σ(c[i]*2^i) ) 也最多需要做32次矩阵乘法
因而最多64次矩阵乘法即可计算出任意32位正整数范围的n对应的S(n)
class Fibonacci {
/*author: Haibin Chen*/
public:
int getNthNumber(int n) {
// write code here
if(n <=) return ;
long a[];
long b[];
long c[];
long d[];
a[]=;
b[]=;
c[]=;
d[]=;
int i,j;
for(i=;i<;i++){
a[i] = a[i-];
b[i] = b[i-];
c[i] = c[i-];
d[i] = d[i-];
getMulti(a[i],b[i],c[i],d[i],a[i],b[i],c[i],d[i]);
}
long ra = ,rb =,rc=,rd=,mask=;
for(i=;i<;i++){
if((n&mask)!=){
getMulti(ra,rb,rc,rd,a[i],b[i],c[i],d[i]);
}
mask = mask <<;
}
return ra;
}
void getMulti(long &a,long &b,long &c,long &d,long a1,long b1,long c1,long d1){
long tempa = (a*a1+b*c1)%;
long tempb = (a*b1+b*d1)%;
long tempc = (c*a1+d*c1)%;
long tempd = (c*b1+d*d1)%;
a = tempa;
b = tempb;
c = tempc;
d = tempd;
}
};
斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)的更多相关文章
- 剑指offer-第二章算法之斐波拉契数列(青蛙跳台阶)
递归与循环 递归:在一个函数的内部调用这个函数. 本质:把一个问题分解为两个,或者多个小问题(多个小问题相互重叠的部分,会存在重复的计算) 优点:简洁,易于实现. 缺点:时间和空间消耗严重,如果递归调 ...
- 剑指offer-面试题9.斐波拉契数列
题目一:写一个函数,输入n,求斐波拉契数列的第n项. 斐波拉契数列的定义如下: { n=; f(n)={ n=; { f(n-)+f(n-) n>; 斐波拉契问题很明显我们会想到用递归来解决: ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
- 关于斐波拉契数列(Fibonacci)
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10 ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
- [NEUQ-OJ] 1012 SZ斐波拉契数列
一道水题,让我看清基础我的基础是多么薄弱. 递归,数组清零,数组名/变量名重复层出不穷...路漫漫啊.......... http://ncc.neuq.edu.cn/oj/problem.php?i ...
- 浅谈C#中的斐波拉契数列
突然对那些有趣的数学类知识感兴趣了,然后就简单研究了一下斐波拉契数列,看看它的有趣之处! 斐波拉契数列(Fibonacci Sequence),又称黄金分割数列,该数列由意大利的数学家列奥纳多·斐波那 ...
- Go斐波拉契数列(Fibonacci)(多种写法)
1 前言 斐波拉契数列有递归写法和尾递归和迭代写法. 2 代码 //recursion func fib(n int) int{ if n < 2{ return n }else{ return ...
- python的生成器(斐波拉契数列(Fibonacci))
代码: 函数版本: #斐波拉契数列(Fibonacci) def fib(max): n=0 a,b=0,1 while n < max: a,b = b,a+b n = n+1 return ...
随机推荐
- STM32 按键输入
#include "stm32f10x.h"#include "key.h" //按键初始化函数void KEY_Init(void) { GPIO_InitT ...
- 【译】Getting Physical With Memory
当我们试图去了解复杂系统时,去除其抽象层,直接关注最底层,我们会更容易去理解.使用这种方法,我们来看一下内存和 I/O 接口的最简单和基础的层:处理器和总线的接口.这些细节是更上层问题的基础,例如线程 ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- Struts2 讲解笔记
1.第一个Struts2入门案例 1.找jar包 Struts2-core xwork-core ognl javasist freemarker commons-lang commons-io co ...
- CODE[VS]1372DNA
Description 为了进一步分析外星生物,专家们决定对 DNA 进行切割.限制性核酸内切酶是基因工程中的重要的工具酶.它会识别一段碱基序列(说白了就是只包含 ATGC 的序列)并且切割开.Eco ...
- ActiveMQ笔记(4):搭建Broker集群(cluster)
上一篇介绍了基于Networks of Borkers的2节点HA方案,这一篇继续来折腾Networks of Brokers,当应用规模日渐增长时,2节点的broker可能仍然抗不住访问压力,这时候 ...
- [LeetCode] Word Pattern 词语模式
Given a pattern and a string str, find if str follows the same pattern. Examples: pattern = "ab ...
- 函数返回多个值(c/c++)
当我们在处理一个数组的时候常常会碰到这样的问题:输入一个数组,和数组的一个元素,返回该元素所在行数和列数.这样就需要返回多组两个值,且组数不定.上述类型的函数在c语言程序里面存在两个问题.第一,函数只 ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- HiShop2.x版本中的上传插件分析,得出所用的模板语言为Underscore.js 1.6.0且自己已修改
效果: 上传组件非常的酷,但是分析其使用JS写法使用了模板语言的,代码如下: <script type="text/j-template" id="tpl_popb ...