Day1-Request/BeautifulSoup
requests
Python标准库中提供了:urllib、urllib2、httplib等模块以供Http请求,但是,它的 API 太渣了。它是为另一个时代、另一个互联网所创建的。它需要巨量的工作,甚至包括各种方法覆盖,来完成最简单的任务。
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。
1、GET请求
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
# 1、无参数实例 import requests ret = requests.get('https://github.com/timeline.json') print ret.urlprint ret.text # 2、有参数实例 import requests payload = {'key1': 'value1', 'key2': 'value2'}ret = requests.get("http://httpbin.org/get", params=payload) print ret.urlprint ret.text |
2、POST请求
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
# 1、基本POST实例 import requests payload = {'key1': 'value1', 'key2': 'value2'}ret = requests.post("http://httpbin.org/post", data=payload) print ret.text # 2、发送请求头和数据实例 import requestsimport json url = 'https://api.github.com/some/endpoint'payload = {'some': 'data'}headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) print ret.textprint ret.cookies |
3、其他请求
|
1
2
3
4
5
6
7
8
9
10
|
requests.get(url, params=None, **kwargs)requests.post(url, data=None, json=None, **kwargs)requests.put(url, data=None, **kwargs)requests.head(url, **kwargs)requests.delete(url, **kwargs)requests.patch(url, data=None, **kwargs)requests.options(url, **kwargs) # 以上方法均是在此方法的基础上构建requests.request(method, url, **kwargs) |
4、更多参数
def request(method, url, **kwargs):
"""Constructs and sends a :class:`Request <Request>`. :param method: method for the new :class:`Request` object.
:param url: URL for the new :class:`Request` object.
:param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`.
:param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`.
:param json: (optional) json data to send in the body of the :class:`Request`.
:param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`.
:param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`.
:param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': file-tuple}``) for multipart encoding upload.
``file-tuple`` can be a 2-tuple ``('filename', fileobj)``, 3-tuple ``('filename', fileobj, 'content_type')``
or a 4-tuple ``('filename', fileobj, 'content_type', custom_headers)``, where ``'content-type'`` is a string
defining the content type of the given file and ``custom_headers`` a dict-like object containing additional headers
to add for the file.
:param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.
:param timeout: (optional) How long to wait for the server to send data
before giving up, as a float, or a :ref:`(connect timeout, read
timeout) <timeouts>` tuple.
:type timeout: float or tuple
:param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed.
:type allow_redirects: bool
:param proxies: (optional) Dictionary mapping protocol to the URL of the proxy.
:param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``.
:param stream: (optional) if ``False``, the response content will be immediately downloaded.
:param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair.
:return: :class:`Response <Response>` object
:rtype: requests.Response Usage:: >>> import requests
>>> req = requests.request('GET', 'http://httpbin.org/get')
<Response [200]>
"""
def param_method_url():
# requests.request(method='get', url='http://127.0.0.1:8000/test/')
# requests.request(method='post', url='http://127.0.0.1:8000/test/')
pass def param_param():
# - 可以是字典
# - 可以是字符串
# - 可以是字节(ascii编码以内) # requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params="k1=v1&k2=水电费&k3=v3&k3=vv3") # requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params=bytes("k1=v1&k2=k2&k3=v3&k3=vv3", encoding='utf8')) # 错误
# requests.request(method='get',
# url='http://127.0.0.1:8000/test/',
# params=bytes("k1=v1&k2=水电费&k3=v3&k3=vv3", encoding='utf8'))
pass def param_data():
# 可以是字典
# 可以是字符串
# 可以是字节
# 可以是文件对象 # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data="k1=v1; k2=v2; k3=v3; k3=v4"
# ) # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data="k1=v1;k2=v2;k3=v3;k3=v4",
# headers={'Content-Type': 'application/x-www-form-urlencoded'}
# ) # requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# data=open('data_file.py', mode='r', encoding='utf-8'), # 文件内容是:k1=v1;k2=v2;k3=v3;k3=v4
# headers={'Content-Type': 'application/x-www-form-urlencoded'}
# )
pass def param_json():
# 将json中对应的数据进行序列化成一个字符串,json.dumps(...)
# 然后发送到服务器端的body中,并且Content-Type是 {'Content-Type': 'application/json'}
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
json={'k1': 'v1', 'k2': '水电费'}) def param_headers():
# 发送请求头到服务器端
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
json={'k1': 'v1', 'k2': '水电费'},
headers={'Content-Type': 'application/x-www-form-urlencoded'}
) def param_cookies():
# 发送Cookie到服务器端
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
data={'k1': 'v1', 'k2': 'v2'},
cookies={'cook1': 'value1'},
)
# 也可以使用CookieJar(字典形式就是在此基础上封装)
from http.cookiejar import CookieJar
from http.cookiejar import Cookie obj = CookieJar()
obj.set_cookie(Cookie(version=0, name='c1', value='v1', port=None, domain='', path='/', secure=False, expires=None,
discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False,
port_specified=False, domain_specified=False, domain_initial_dot=False, path_specified=False)
)
requests.request(method='POST',
url='http://127.0.0.1:8000/test/',
data={'k1': 'v1', 'k2': 'v2'},
cookies=obj) def param_files():
# 发送文件
# file_dict = {
# 'f1': open('readme', 'rb')
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) # 发送文件,定制文件名
# file_dict = {
# 'f1': ('test.txt', open('readme', 'rb'))
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) # 发送文件,定制文件名
# file_dict = {
# 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf")
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) # 发送文件,定制文件名
# file_dict = {
# 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'})
# }
# requests.request(method='POST',
# url='http://127.0.0.1:8000/test/',
# files=file_dict) pass def param_auth():
from requests.auth import HTTPBasicAuth, HTTPDigestAuth ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf'))
print(ret.text) # ret = requests.get('http://192.168.1.1',
# auth=HTTPBasicAuth('admin', 'admin'))
# ret.encoding = 'gbk'
# print(ret.text) # ret = requests.get('http://httpbin.org/digest-auth/auth/user/pass', auth=HTTPDigestAuth('user', 'pass'))
# print(ret)
# def param_timeout():
# ret = requests.get('http://google.com/', timeout=1)
# print(ret) # ret = requests.get('http://google.com/', timeout=(5, 1))
# print(ret)
pass def param_allow_redirects():
ret = requests.get('http://127.0.0.1:8000/test/', allow_redirects=False)
print(ret.text) def param_proxies():
# proxies = {
# "http": "61.172.249.96:80",
# "https": "http://61.185.219.126:3128",
# } # proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'} # ret = requests.get("http://www.proxy360.cn/Proxy", proxies=proxies)
# print(ret.headers) # from requests.auth import HTTPProxyAuth
#
# proxyDict = {
# 'http': '77.75.105.165',
# 'https': '77.75.105.165'
# }
# auth = HTTPProxyAuth('username', 'mypassword')
#
# r = requests.get("http://www.google.com", proxies=proxyDict, auth=auth)
# print(r.text) pass def param_stream():
ret = requests.get('http://127.0.0.1:8000/test/', stream=True)
print(ret.content)
ret.close() # from contextlib import closing
# with closing(requests.get('http://httpbin.org/get', stream=True)) as r:
# # 在此处理响应。
# for i in r.iter_content():
# print(i) def requests_session():
import requests session = requests.Session() ### 1、首先登陆任何页面,获取cookie i1 = session.get(url="http://dig.chouti.com/help/service") ### 2、用户登陆,携带上一次的cookie,后台对cookie中的 gpsd 进行授权
i2 = session.post(
url="http://dig.chouti.com/login",
data={
'phone': "8615131255089",
'password': "xxxxxx",
'oneMonth': ""
}
) i3 = session.post(
url="http://dig.chouti.com/link/vote?linksId=8589623",
)
print(i3.text)
BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
from bs4 import BeautifulSouphtml_doc = """<html><head><title>The Dormouse's story</title></head><body>asdf <div class="title"> <b>The Dormouse's story总共</b> <h1>f</h1> </div><div class="story">Once upon a time there were three little sisters; and their names were <a class="sister0" id="link1">Els<span>f</span>ie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>;and they lived at the bottom of a well.</div>ad<br/>sf<p class="story">...</p></body></html>"""soup = BeautifulSoup(html_doc, features="lxml")# 找到第一个a标签tag1 = soup.find(name='a')# 找到所有的a标签tag2 = soup.find_all(name='a')# 找到id=link2的标签tag3 = soup.select('#link2') |
安装:
|
1
|
pip3 install beautifulsoup4 |
使用示例:
|
1
2
3
4
5
6
7
8
9
10
11
|
from bs4 import BeautifulSouphtml_doc = """<html><head><title>The Dormouse's story</title></head><body> ...</body></html>"""soup = BeautifulSoup(html_doc, features="lxml") |
1. name,标签名称
|
1
2
3
4
5
|
# tag = soup.find('a')# name = tag.name # 获取# print(name)# tag.name = 'span' # 设置# print(soup) |
2. attr,标签属性
|
1
2
3
4
5
6
|
# tag = soup.find('a')# attrs = tag.attrs # 获取# print(attrs)# tag.attrs = {'ik':123} # 设置# tag.attrs['id'] = 'iiiii' # 设置# print(soup) |
3. children,所有子标签
|
1
2
|
# body = soup.find('body')# v = body.children |
4. children,所有子子孙孙标签
|
1
2
|
# body = soup.find('body')# v = body.descendants |
5. clear,将标签的所有子标签全部清空(保留标签名)
|
1
2
3
|
# tag = soup.find('body')# tag.clear()# print(soup) |
6. decompose,递归的删除所有的标签
|
1
2
3
|
# body = soup.find('body')# body.decompose()# print(soup) |
7. extract,递归的删除所有的标签,并获取删除的标签
|
1
2
3
|
# body = soup.find('body')# v = body.extract()# print(soup) |
8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
|
1
2
3
4
|
# body = soup.find('body')# v = body.decode()# v = body.decode_contents()# print(v) |
9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)
|
1
2
3
4
|
# body = soup.find('body')# v = body.encode()# v = body.encode_contents()# print(v) |
10. find,获取匹配的第一个标签
|
1
2
3
4
5
|
# tag = soup.find('a')# print(tag)# tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')# tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie')# print(tag) |
11. find_all,获取匹配的所有标签
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
# tags = soup.find_all('a')# print(tags)# tags = soup.find_all('a',limit=1)# print(tags)# tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie')# # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie')# print(tags)# ####### 列表 ######## v = soup.find_all(name=['a','div'])# print(v)# v = soup.find_all(class_=['sister0', 'sister'])# print(v)# v = soup.find_all(text=['Tillie'])# print(v, type(v[0]))# v = soup.find_all(id=['link1','link2'])# print(v)# v = soup.find_all(href=['link1','link2'])# print(v)# ####### 正则 #######import re# rep = re.compile('p')# rep = re.compile('^p')# v = soup.find_all(name=rep)# print(v)# rep = re.compile('sister.*')# v = soup.find_all(class_=rep)# print(v)# rep = re.compile('http://www.oldboy.com/static/.*')# v = soup.find_all(href=rep)# print(v)# ####### 方法筛选 ######## def func(tag):# return tag.has_attr('class') and tag.has_attr('id')# v = soup.find_all(name=func)# print(v)# ## get,获取标签属性# tag = soup.find('a')# v = tag.get('id')# print(v) |
12. has_attr,检查标签是否具有该属性
|
1
2
3
|
# tag = soup.find('a')# v = tag.has_attr('id')# print(v) |
13. get_text,获取标签内部文本内容
|
1
2
3
|
# tag = soup.find('a')# v = tag.get_text('id')# print(v) |
14. index,检查标签在某标签中的索引位置
|
1
2
3
4
5
6
7
|
# tag = soup.find('body')# v = tag.index(tag.find('div'))# print(v)# tag = soup.find('body')# for i,v in enumerate(tag):# print(i,v) |
15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,
判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
|
1
2
3
|
# tag = soup.find('br')# v = tag.is_empty_element# print(v) |
16. 当前的关联标签
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
# soup.next# soup.next_element# soup.next_elements# soup.next_sibling# soup.next_siblings## tag.previous# tag.previous_element# tag.previous_elements# tag.previous_sibling# tag.previous_siblings## tag.parent# tag.parents |
17. 查找某标签的关联标签
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# tag.find_next(...)# tag.find_all_next(...)# tag.find_next_sibling(...)# tag.find_next_siblings(...)# tag.find_previous(...)# tag.find_all_previous(...)# tag.find_previous_sibling(...)# tag.find_previous_siblings(...)# tag.find_parent(...)# tag.find_parents(...)# 参数同find_all |
18. select,select_one, CSS选择器
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
soup.select("title")soup.select("p nth-of-type(3)")soup.select("body a")soup.select("html head title")tag = soup.select("span,a")soup.select("head > title")soup.select("p > a")soup.select("p > a:nth-of-type(2)")soup.select("p > #link1")soup.select("body > a")soup.select("#link1 ~ .sister")soup.select("#link1 + .sister")soup.select(".sister")soup.select("[class~=sister]")soup.select("#link1")soup.select("a#link2")soup.select('a[href]')soup.select('a[href="http://example.com/elsie"]')soup.select('a[href^="http://example.com/"]')soup.select('a[href$="tillie"]')soup.select('a[href*=".com/el"]')from bs4.element import Tagdef default_candidate_generator(tag): for child in tag.descendants: if not isinstance(child, Tag): continue if not child.has_attr('href'): continue yield childtags = soup.find('body').select("a", _candidate_generator=default_candidate_generator)print(type(tags), tags)from bs4.element import Tagdef default_candidate_generator(tag): for child in tag.descendants: if not isinstance(child, Tag): continue if not child.has_attr('href'): continue yield childtags = soup.find('body').select("a", _candidate_generator=default_candidate_generator, limit=1)print(type(tags), tags) |
19. 标签的内容
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
# tag = soup.find('span')# print(tag.string) # 获取# tag.string = 'new content' # 设置# print(soup)# tag = soup.find('body')# print(tag.string)# tag.string = 'xxx'# print(soup)# tag = soup.find('body')# v = tag.stripped_strings # 递归内部获取所有标签的文本# print(v) |
20.append在当前标签内部追加一个标签
|
1
2
3
4
5
6
7
8
9
10
|
# tag = soup.find('body')# tag.append(soup.find('a'))# print(soup)## from bs4.element import Tag# obj = Tag(name='i',attrs={'id': 'it'})# obj.string = '我是一个新来的'# tag = soup.find('body')# tag.append(obj)# print(soup) |
21.insert在当前标签内部指定位置插入一个标签
|
1
2
3
4
5
6
|
# from bs4.element import Tag# obj = Tag(name='i', attrs={'id': 'it'})# obj.string = '我是一个新来的'# tag = soup.find('body')# tag.insert(2, obj)# print(soup) |
22. insert_after,insert_before 在当前标签后面或前面插入
|
1
2
3
4
5
6
7
|
# from bs4.element import Tag# obj = Tag(name='i', attrs={'id': 'it'})# obj.string = '我是一个新来的'# tag = soup.find('body')# # tag.insert_before(obj)# tag.insert_after(obj)# print(soup) |
23. replace_with 在当前标签替换为指定标签
|
1
2
3
4
5
6
|
# from bs4.element import Tag# obj = Tag(name='i', attrs={'id': 'it'})# obj.string = '我是一个新来的'# tag = soup.find('div')# tag.replace_with(obj)# print(soup) |
24. 创建标签之间的关系
|
1
2
3
4
|
# tag = soup.find('div')# a = soup.find('a')# tag.setup(previous_sibling=a)# print(tag.previous_sibling) |
25. wrap,将指定标签把当前标签包裹起来
|
1
2
3
4
5
6
7
8
9
10
11
|
# from bs4.element import Tag# obj1 = Tag(name='div', attrs={'id': 'it'})# obj1.string = '我是一个新来的'## tag = soup.find('a')# v = tag.wrap(obj1)# print(soup)# tag = soup.find('a')# v = tag.wrap(soup.find('p'))# print(soup) |
26. unwrap,去掉当前标签,将保留其包裹的标签
|
1
2
3
|
# tag = soup.find('a')# v = tag.unwrap()# print(soup) |
Day1-Request/BeautifulSoup的更多相关文章
- 第14.18节 爬虫实战4: request+BeautifulSoup+os实现利用公众服务Wi-Fi作为公网IP动态地址池
写在前面:本文相关方法为作者独创,仅供参考学习爬虫技术使用,请勿用作它途,禁止转载! 一. 引言 在爬虫爬取网页时,有时候希望不同的时候能以不同公网地址去爬取相关的内容,去网上购买地址资源池是大部分人 ...
- 第14.16节 爬虫实战2:赠人玫瑰,手留余香! request+BeautifulSoup实现csdn博文自动点赞
写在前面:本文仅供参考学习,请勿用作它途,禁止转载! 在<第14.14节 爬虫实战准备:csdn博文点赞过程http请求和响应信息分析>老猿分析了csdn博文点赞处理的http请求和响应报 ...
- Python 爬虫之request+beautifulsoup+mysql
一.什么是爬虫?它是指向网站发起请求,获取资源后分析并提取有用数据的程序:爬虫的步骤: 1.发起请求使用http库向目标站点发起请求,即发送一个RequestRequest包含:请求头.请求体等 2. ...
- 第14.17节 爬虫实战3: request+BeautifulSoup实现自动获取本机上网公网地址
一. 引言 一般情况下,没有特殊要求的客户,宽带服务提供商提供的上网服务,给客户家庭宽带分配的地址都是一个宽带服务提供商的内部服务地址,真正对外访问时通过NAT进行映射到一个公网地址,如果我们想确认自 ...
- 第14.9节 Python中使用urllib.request+BeautifulSoup获取url访问的基本信息
利用urllib.request读取url文档的内容并使用BeautifulSoup解析后,可以通过一些基本的BeautifulSoup对象输出html文档的基本信息.以博文<第14.6节 使用 ...
- 第14.13节 BeautifulSoup的其他功能导览
前面<第14.9节 Python中使用urllib.request+BeautifulSoup获取url访问的基本信息 >.<第14.10节 Python中使用BeautifulSo ...
- 第14.8节 Python中使用BeautifulSoup加载HTML报文
一. 引言 BeautifulSoup是一个三方模块bs4中提供的进行HTML解析的类,可以认为是一个HTML解析工具箱,对HTML报文中的标签具有比较好的容错识别功能.阅读本节需要了解html相关的 ...
- Python黑客——快速编写信息收集器
i春秋作家:大木瓜 环境:Python 3模块:LxmlRequestBeautifulsoup开始:首先看一下目标站: http://gaokao.chsi.com.cn/gkxx/zszcgd/d ...
- python实战之原生爬虫(爬取熊猫主播排行榜)
""" this is a module,多行注释 """ import re from urllib import request # B ...
- python经典书记必读:Python编程快速上手 让繁琐工作自动化
所属网站分类: 资源下载 > python电子书 作者:熊猫烧香 链接:http://www.pythonheidong.com/blog/article/69/ 来源:python黑洞网,专注 ...
随机推荐
- 【题解】bzoj 4478 [Jsoi2013]侦探jyy
原题传送门 弱智搜索题 我们就枚举每个点,先判断它是否必须发生,如果没有必须发生,开始搜索它的祖先,如果祖先中有必须发生的,那么它就必须发生,如果祖先中没有必须发生的,那么搜索所有入度为0的点(除了它 ...
- Angular4.x 创建组件|绑定数据|绑定属性|数据循环|条件判断|事件|表单处理|双向数据绑定
Angular4.x 创建组件|绑定数据|绑定属性|数据循环|条件判断|事件|表单处理|双向数据绑定 创建 angular 组件 https://github.com/angular/angular- ...
- JavaScript中数组的排序方法:1.冒泡排序 2.选择排序
//1.选择排序: //从小到大排序:通过比较首先选出最小的数放在第一个位置上,然后在其余的数中选出次小数放在第二个位置上,依此类推,直到所有的数成为有序序列. var arr2=[19, 8, ...
- 【python014--字符串内置函数】
一.实现跨越多行的字符串 1.采用双引号实现 str1 = ""待我长发及腰,将军归来可好?此身君子意逍遥,怎料山河萧萧天光乍破遇,暮雪白头老寒剑默听奔雷,长枪独守空豪醉卧沙场君莫 ...
- topcoder srm 694 div1 -3
1.给出$n$个数字,将其分成三个非空的组,每组的权值为该组所有数字的抑或.选择一种分法使得三组的权值和最大? 思路:记录前两组的权值且三组有没有数字时第三组的值.(当前两组的值知道时第三组的权值是确 ...
- Oracle为表或字段添加备注
comment on column TableName.ColumnName is ‘备注名’; comment on table TableName is '备注名';
- 05文件合并脚本--By Mark Lutz
''' 合并split.py创建的目录下的所有组分文件以重建文件. 依赖文件名的排序:长度必须一致. ''' import os,sys readsize=1024 def join(fromdir, ...
- dart基础计数器
import 'package:flutter/material.dart'; void main() => runApp(new MyApp()); class MyApp extends S ...
- poj2774
思路 求出height之后 只要相邻两个子串是本串不同的来更新就好 因为这样一定是最优啊..取min显然越长越不好 (这里'%'当成'{'吧) abc%bca height i sa belong 0 ...
- 一个查表置换的CM
说实话,今天被自己蠢哭了 因为看多了一个字符,以为是输入字符变形后的base64编码,也怪自己没大致看过base64汇编形式,把base64跟完了用py实现完算法才意思到是base64,这是题外话 本 ...