P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)
题目链接:传送门
题目:
题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( <= N <= ,), which, as always, are conveniently numbered from ..N. Accordingly, he snapped M ( <= M <= ,) photos, each covering a contiguous range of cows: photo i contains cows a_i through b_i inclusive. The photos collectively may not necessarily cover every single cow. After taking his photos, FJ notices a very interesting phenomenon: each photo he took contains exactly one cow with spots! FJ was aware that he had some number of spotted cows in his herd, but he had never actually counted them. Based on his photos, please determine the maximum possible number of spotted cows that could exist in his herd. Output - if there is no possible assignment of spots to cows consistent with FJ's photographic results. 输入输出格式
输入格式: * Line : Two integers N and M. * Lines ..M+: Line i+ contains a_i and b_i. 输出格式: * Line : The maximum possible number of spotted cows on FJ's farm, or -1 if there is no possible solution. 输入输出样例
输入样例#: 输出样例#: 说明 There are cows and photos. The first photo contains cows through , etc. From the last photo, we know that either cow or cow must be spotted. By choosing either of these, we satisfy the first two photos as well.
思路:
如果要把牛放在第i个位置,它之前的那只牛应该放在[li, ri]之间,根据输入处理出li和ri,就可以转移状态了。
读入x,y时,用x更新ly+1,用x-1更新ry。
读入结束之后从前往后扫一遍,用li-1更新li;再从后往前扫一遍,用ri+1更新ri。
然后就可以跑dp了,f[i] = max{f[j] | li ≤ j ≤ ri}
状态:
f[i] 表示把最后一只牛放在第i个位置的最大数量。
状态转移方程:
f[i] = max{f[j] | li ≤ j ≤ ri}
#include <bits/stdc++.h> using namespace std;
const int MAX_N = 2e5 + ;
#define tomax(a, b) a = a>b?a:b
#define tomin(a, b) a = a<b?a:b int N, M, l[MAX_N], r[MAX_N];
int f[MAX_N]; int main()
{
// freopen("testdata.in", "r", stdin);
cin >> N >> M;
for (int i = ; i <= N+; i++)
r[i] = i-;
for (int i = ; i <= M; i++) {
int x, y;
scanf("%d%d", &x, &y);
tomin(r[y], x-);
tomax(l[y+], x);
}
for (int i = ; i <= N+; i++)
tomax(l[i], l[i-]);
for (int i = N; i >= ; i--)
tomin(r[i], r[i+]);
memset(f, -, sizeof f);
f[] = ;
for (int i = ; i <= N+; i++)
for (int j = l[i]; j <= r[i]; j++) if(f[j] != -)
tomax(f[i], f[j] + (i!=N+ ? : )); cout << f[N+] << endl;
return ;
}
/*
5 3
1 4
2 4
1 1
*/
本来是瞄了一眼题解,理解了思路之后准备不优化暴力T一发的,结果直接AC了,还跑得贼快?-。=
不过这样子写应该可以被两只牛的大数据卡掉:
献上单调队列优化的正解:
#include <bits/stdc++.h> using namespace std;
const int MAX_N = 2e5 + ;
#define tomax(a, b) a = a>b?a:b
#define tomin(a, b) a = a<b?a:b int N, M, l[MAX_N], r[MAX_N];
int h, t, q[MAX_N], f[MAX_N]; int main()
{
cin >> N >> M;
memset(f, , sizeof f);
for (int i = ; i <= N+; i++)
r[i] = i-;
for (int i = ; i <= M; i++) {
int x, y;
scanf("%d%d", &x, &y);
tomin(r[y], x-);
tomax(l[y+], x);
}
for (int i = ; i <= N+; i++)
tomax(l[i], l[i-]);
for (int i = N; i >= ; i--)
tomin(r[i], r[i+]);
int j = ;
h = , t = , q[++t] = ;
for (int i = ; i <= N+; i++) {
while (j <= N && j <= r[i]) {
if (f[j] == -) {
++j;
continue;
}
while (h <= t && f[q[t]] <= f[j]) --t;
q[++t] = j;
++j;
}
while (h <= t && q[h] < l[i]) ++h;
if (h <= t) f[i] = f[q[h]] + (i!=N+ ? : );
else f[i] = -;
}
cout << f[N+] << endl;
return ;
}
P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)的更多相关文章
- P3084 [USACO13OPEN]照片Photo dp
题意: 有n个区间,每个区间只能有一个斑点奶牛,问最多有几个斑点奶牛. 思路: 首先要处理出每个点的L[i],R[i]. L[i]表示L[i]-i-1之间一定有一个点.i也是选中的. R[i]表示R[ ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- 洛谷 P3084 [USACO13OPEN]照片Photo 解题报告
[USACO13OPEN]照片Photo 题目描述 农夫约翰决定给站在一条线上的\(N(1 \le N \le 200,000)\)头奶牛制作一张全家福照片,\(N\)头奶牛编号\(1\)到\(N\) ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
- Codeforces 1077F2 Pictures with Kittens (hard version)(DP+单调队列优化)
题目链接:Pictures with Kittens (hard version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:数据量5000, ...
- Codeforces 445A Boredom(DP+单调队列优化)
题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...
- bzoj 1855 dp + 单调队列优化
思路:很容易写出dp方程,很容易看出能用单调队列优化.. #include<bits/stdc++.h> #define LL long long #define fi first #de ...
- 股票交易(DP+单调队列优化)
题目描述 最近lxhgww又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,lxhgww预测到了未来T天内某只股票的走势,第i天的股票买入价为每股APi, ...
- Luogu 2627 修建草坪 (动态规划Dp + 单调队列优化)
题意: 已知一个序列 { a [ i ] } ,求取出从中若干不大于 KK 的区间,求这些区间和的最大值. 细节: 没有细节???感觉没有??? 分析: 听说有两种方法!!! 好吧实际上是等价的只是看 ...
随机推荐
- Android 常用动画
一.动画类型 Android的animation由四种类型组成:alpha.scale.translate.rotate XML配置文件中 alpha :渐变透明度动画效果 scale :渐变尺寸伸缩 ...
- zabbix3.4.7表结构
zabbix数据库表结构的重要性 想理解zabbix的前端代码.做深入的二次开发,甚至的调优,那就不能不了解数据库的表结构了. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
- php 处理ftp常用操作与方法
原文地址:https://www.cnblogs.com/longfeiPHP/p/5420632.html $ftp_conn = ftp_connect("192.168.1.230&q ...
- Win10系列:UWP界面布局基础7
2.附加属性 有一些XAML元素,其自身的属性大多是在其它的元素中声明和使用的,该元素本身却很少使用,这些在其他元素中声明和使用的属性被称为附加属性(Attached Properties).附加属性 ...
- WPF实现DoEvents
WPF实现DoEvents 原创 2011年06月30日 12:23:00 标签: wpf / object 2550 static void DoEvents() { DispatcherFrame ...
- Spring注入,Ioc的具体配置
Spring框架的IOC注入: 一.Java部分代码: Person实体类: package com.ioc; import java.util.List; import java.util.Map; ...
- 十二. Python基础(12)--生成器
十二. Python基础(12)--生成器 1 ● 可迭代对象(iterable) An object capable of returning its members one at a time. ...
- LeetCode难度与出现频率
转载自:LeetCode Question Difficulty Distribution 1 Two Sum 2 5 array sort set Two ...
- HTML语义化简介思维导图
- 什么是XP
极限编程(XP)是敏捷过程中最富盛名的一个.下述这些特点使得敏捷过程能够较好地适应商业竞争环境下对小型项目提出的有效资源和有限开发时间的约束. 极限编程的有效实践 极限编程的整体开发过程 极限编程的迭 ...