关于autoencoder的内容简介可以参考这一篇博客,可以说写的是十分详细了https://sherlockliao.github.io/2017/06/24/vae/

盗图一张,自动编码器讲述的是对于一副输入的图像,或者是其他的信号,经过一系列操作,比如卷积,或者linear变换,变换得到一个向量,这个向量就叫做对这个图像的编码,这个过程就叫做encoder,对于一个特定的编码,经过一系列反卷积或者是线性变换,得到一副图像,这个过程叫做decoder,即解码。

然而自动编码器有什么用,看到上面的博客所写

所以现在自动编码器主要应用有两个方面,第一是数据去噪,第二是进行可视化降维。然而自动编码器还有着一个功能就是生成数据。

然而现在还没有用过这方面的应用,在这里需要着重说明一点的是autoencoder并不是聚类,因为虽然对于每一副图像都没有对应的label,但是autoencoder的任务并不是对图像进行分类啊。

就事论事,下面来分析一下一个大神写的关于autoencoder的代码,这里先给出github链接

先奉上代码

 # -*-coding: utf-8-*-
__author__ = 'SherlockLiao' import torch
import torchvision
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
from torchvision.datasets import MNIST
import os if not os.path.exists('./dc_img'):
os.mkdir('./dc_img') def to_img(x): # 将vector转换成矩阵
x = 0.5 * (x + 1)
x = x.clamp(0, 1)
x = x.view(x.size(0), 1, 28, 28)
return x num_epochs = 100
batch_size = 128
learning_rate = 1e-3 img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
]) dataset = MNIST('./data', transform=img_transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) class autoencoder(nn.Module):
def __init__(self):
super(autoencoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, 3, stride=3, padding=1), # b, 16, 10, 10
nn.ReLU(True),
nn.MaxPool2d(2, stride=2), # b, 16, 5, 5
nn.Conv2d(16, 8, 3, stride=2, padding=1), # b, 8, 3, 3
nn.ReLU(True),
nn.MaxPool2d(2, stride=1) # b, 8, 2, 2
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(8, 16, 3, stride=2), # b, 16, 5, 5
nn.ReLU(True),
nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1), # b, 8, 15, 15
nn.ReLU(True),
nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1), # b, 1, 28, 28
nn.Tanh() # 将输出值映射到-1~1之间
) def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x model = autoencoder().cuda()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate,
weight_decay=1e-5) for epoch in range(num_epochs):
for data in dataloader:
img, _ = data # img是一个b*channel*width*height的矩阵
img = Variable(img).cuda()
# ===================forward=====================
output = model(img)
a = img.data.cpu().numpy()
b = output.data.cpu().numpy()
loss = criterion(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}'
.format(epoch+1, num_epochs, loss.data[0]))
if epoch % 10 == 0:
pic = to_img(output.cpu().data) # 将decoder的输出保存成图像
save_image(pic, './dc_img/image_{}.png'.format(epoch)) torch.save(model.state_dict(), './conv_autoencoder.pth')

可以说是写的相当清晰了,卷积,pooling,卷积,pooling,最后encoder输出的是一个向量,这个向量的尺寸是8*2*2,一共是32个元素,然后对这个8*2*2的元素进行反卷积操作,pytorch关于反卷积的操作的尺寸计算可以看这里

大概就这样开始训练,save_image是util中的一个函数,给定某一个batchsize的图像,将这个图像保存成8列,特定行的操作。

训练的loss如下

输出的图像如下,从左到右,从上往下,依次为epoch递增的情况

    

    

其实还是可以发现,随着epoch的增加,经过decoder生成的图像越来越接近真实图片

pytorch实现autoencoder的更多相关文章

  1. Pytorch中的自编码(autoencoder)

    Pytorch中的自编码(autoencoder) 本文资料来源:https://www.bilibili.com/video/av15997678/?p=25 什么是自编码 先压缩原数据.提取出最有 ...

  2. Variational Auto-encoder(VAE)变分自编码器-Pytorch

    import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from ...

  3. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  4. pytorch做seq2seq注意力模型的翻译

    以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- " ...

  5. Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现. 1. 稀疏编码 首先介绍一下“稀疏编码 ...

  6. (转)Awesome PyTorch List

    Awesome-Pytorch-list 2018-08-10 09:25:16 This blog is copied from: https://github.com/Epsilon-Lee/Aw ...

  7. (转) The Incredible PyTorch

    转自:https://github.com/ritchieng/the-incredible-pytorch The Incredible PyTorch What is this? This is ...

  8. 库、教程、论文实现,这是一份超全的PyTorch资源列表(Github 2.2K星)

    项目地址:https://github.com/bharathgs/Awesome-pytorch-list 列表结构: NLP 与语音处理 计算机视觉 概率/生成库 其他库 教程与示例 论文实现 P ...

  9. VAE--就是AutoEncoder的编码输出服从正态分布

    花式解释AutoEncoder与VAE 什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 1)跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似 ...

随机推荐

  1. VMware进入BIOS

    在虚拟机关机状态下,点击“虚拟机”--“电源”--“打开电源时进入固件”即自动启动进入bios

  2. Sql server中 如何用sql语句创建视图

    1.视图的作用 视图的作用: 第一点:使用视图,可以定制用户数据,聚焦特定的数据. 解释: 在实际过程中,公司有不同角色的工作人员,我们以销售公司为例的话, 采购人员,可以需要一些与其有关的数据,而与 ...

  3. OSI七层协议概念详解

    OSI七层模型 相关协议 缩写 应用层 HTTP 超文本传输协议 FTP 文件传输协议 SMTP 简单邮件传输协议 TELNET TCP/IP终端仿真协议 POP3 邮局协议第三版 Finger 用户 ...

  4. 【1】windows下IOS开发基础环境搭建

    一.目的 本文的目的是windows下IOS开发基础环境搭建做了对应的介绍,大家可根据文档步骤进行mac环境部署: 二.安装虚拟机 下载虚拟机安装文件绿色版,点击如下文件安装 获取安装包:       ...

  5. learning ddr Electrical Characteristics and AC Timing

    reference: JEDS79-3F.pdf , page:181

  6. 利用FFMPEG命令进行文件分割

    ffmpeg -ss 00:00:00 -i input.mp4 -c copy -t 60 output.mp4 -ss 表示视频分割的起始时间,-t 表示分割时长,同时也可以用 00:01:00表 ...

  7. pyhton 学习 函数式编程

    函数是python内建支持的一种封装,我们通过把打断的代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计,函数就是面向过程的程序设计的基本单元 ...

  8. java⑧

    1.switch的表达式取值: byte  short  int  char   Enum(枚举)    jdk1.7版本以上支持 String类型 2. break: 01.代表跳出当前方法体!跳出 ...

  9. HTML5 ④

    块元素和行元素: 1.行元素:在一行内显示,不会自动换行的标签.不能设置宽高. 块元素:自动换行的标签,能设置宽高.*利于我们页面布局   比如:段落标签,标题标签都是块元素 2.两者可以互相转换,通 ...

  10. svn服务器搭建及使用(一)

    这里郑重感谢分享作者的辛苦:http://www.cnblogs.com/xiaobaihome/archive/2012/03/20/2407610.html Subversion是优秀的版本控制工 ...