「LCT」
终于在多篇题解和我的个人超常发挥下抄完了lct的所有题,kx死了。
理解
在我看来,实际上lct的板子没有什么考的,更重要的可能是起到一个数据结构的维护作用实际上就是出题人想给你找点乐子。
前几道题都还是基础类型,到后面真的是颓题解都不太懂系列,还是有很多东西要学啊。
例题
A. Cave 洞穴勘测
其实我发现数据结构专题都不用写题解的这个。
码就完了。
B. 树的维护
新get了一个边化点的以后就会变成常识套路。
维护最大值最小值,变成相反数就交换加负号。
C. tree
这道题需要维护加法乘法两个懒标记,我的做法是乘法优先,如果此时有加法标记就给它乘上。
除了调死我了我还有什么好说的呢
D. 水管局长数据加强版
通过B哥的题解记起了还有时光倒流这种远古方法。
E. GERALD07加强版
调了一晚上
通过B哥的题解
类似数颜色?维护每条边的pre表示这条边被谁取代,维护一个森林,如果加上这条边成环了就删掉最历史悠久的边,然后主席树,查询时查询区间内小于L的数个数。
G. 难存的情缘
唔...同树的维护?
A. 魔法森林
题目求A+B的最小值,其中A为$max{a}$,B为$max{B}$,这样就会发现其实A和B的贡献可以分开算。
那么就有一个套路了:把所有边按A升序,然后每加入一条边A的最大值就已经确定,只需要得到B的最大值最小就好了。
如果不选这条边确实A的最大值不会是这条边,但不会影响答案最小解啊。
B. 大森林
大神题警告!做了一晚上+半上午剩下半上午用来颓废
不看题解真的是无从下手。因为这n棵树关系不定,而生长节点又是什么玩意啊。
应该把操作一看成把一些节点刚开始长在最初的生长节点,到L树时把这些节点挪到x节点,到R+1树时再给它挪回去。
操作零实际上可以省去范围,因为多建点对询问并没有影响,又没有长在路径上。
操作一看成在x这棵树时查询两点间的距离。
所以实际瓶颈在如何在正确的复杂度内执行操作一。
建虚点。这样就可以直接把点都建在对应的虚点下,该挪移的时候就直接$cut link$虚点和对应的生长节点了。
因为建立了虚点,又需要统计路径,只好给每个点赋点权,实点赋1,虚点赋0。统计答案不能用split,因为此时两点间的路径由于虚点的建立已经被破坏,而由于每个点到根的路径不变,所以我们可以split(u),得到$sum_1$就是u到根的深度,再split(v),split(lca)就得到答案了,怎么得到lca呢?access u时又在access v时出现的深度最大的点就是答案。
注意节点有生活范围,1操作的换生长节点操作要和x节点的生活范围求交。1节点也要记录生活范围,不然会对拍2h到自闭(然后被神啵茬1min精准定位错误)
可以makeroot啊,只要保证求解时根不变就对了。
C. 情报传递
Dybala說的思博题我还是颓了题解....我怕是要完
看透了传递情报的C的含义:求i-C-1前的搜集情报人的点权和,就可以结束了。
D. 在美妙的数学王国中畅游
真想不到。
泰勒展开就可以lct维护系数了,导15,16次就可以够精度了。
微积分快去颓nc哥。
神啵茬又一次1min切掉我调了一万年的错误。
E. LCA
只想到了分块思路,还卡了半天的常。
分块。
维护每一块对每一个z的贡献。O($n\sqrt n$)
这里的dfs没想出来。
对于块内的每个点,它自己的值先设成1。然后统计子树内有多少个点,这就是这个点的贡献,再统计一次前缀和,就是这个块对z是这个点时的深度贡献。
边角暴力求lca的dep。O($m\sqrt n$)
必须用O(1)LCA。必须变深搜为广搜吗。
正解是差分,把区间查询变成了查询$(1,r)-(1,l-1)$的贡献。
修改相当于是区间+1,查询相当于取区间和。
F. 即时战略
交互题第一次做。二话不说颓题解。
对于链的情况需要特殊处理,也很好处理,建一个双端队列,每次选择一个没有遍历的点为目标。
取队首explore。如果更新出新的点,就一直更新。否则就一定是队首后边的元素,就直接跳到队尾不断更新就完了。
对于其它情况,可以用lct。还是选择一个未更新的点,接着从1开始explore。因为有可能跳了很多次都是已经遍历过的点
所以定义$L_i R_i$表示在splay上i跳到的最小深度的节点和最大深度的节点,也就是以i为根的splay向左向右的链的尾点。
那么对于节点i explore到的点j。有四种情况。
一:没遍历过。i跳到j,并把j的父亲设成i,相当于建虚边。
二:j=R[ch[i][0]]。也就是i上边的点。i跳到ch[i][0],相当于跳到了j的上边一半(平衡状态),等价于二分链位置。
三:j=L[ch[i][1]]。也就是i下边的点。i跳到ch[i][1]。
四:是其它splay里的点,就跳到那个splay的根继续找。这里如果选择把跳到的j splay到根而不是跳根的话就过不了hack数据。
之所以要跳到根,因为要二分目标节点的位置,自然,根最平衡啦。
最后找到目标节点后还要access,使splay数量尽可能少。
还不能makeroot。不知道为啥。
「LCT」的更多相关文章
- 「ZJOI2018」历史(LCT)
「ZJOI2018」历史(LCT) \(ZJOI\) 也就数据结构可做了-- 题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改. \(30pts:\) 挺好想的.发现切换次数 ...
- 「数据结构」Link-Cut Tree(LCT)
#1.0 简述 #1.1 动态树问题 维护一个森林,支持删除某条边,加入某条边,并保证加边.删边之后仍然是森林.我们需要维护这个森林的一些信息. 一般的操作有两点连通性,两点路径权值和等等. #1.2 ...
- loj2341「WC2018」即时战略(随机化,LCT/动态点分治)
loj2341「WC2018」即时战略(随机化,LCT/动态点分治) loj Luogu 题解时间 对于 $ datatype = 3 $ 的数据,explore操作次数只有 $ n+log n $ ...
- 「SDOI2017」树点涂色 解题报告
「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set ...
- 「luogu2387」[NOI2014] 魔法森林
「luogu2387」[NOI2014] 魔法森林 题目大意 \(n\) 个点 \(m\) 条边的无向图,每条边上有两个权值 \(a,b\),求从 \(1\) 节点到 \(n\) 节点 \(max\{ ...
- 「HNOI2016」数据结构大毒瘤
真是 \(6\) 道数据结构毒瘤... 开始口胡各种做法... 「HNOI2016」网络 整体二分+树状数组. 开始想了一个大常数 \(O(n\log^2 n)\) 做法,然后就被卡掉了... 发现直 ...
- 「TJOI2015」旅游 解题报告
「TJOI2015」旅游 LCT沙比题 考虑我们其实是在维护一条链的\(\max\limits_{i<j} v_j-v_i\) 每次直接拿左右子树更新一下就可以了 写的时候把两个方向都维护一下, ...
- 「SHOI2014」三叉神经树 解题报告
「SHOI2014」三叉神经树 膜拜神仙思路 我们想做一个类似于动态dp的东西,首先得确保我们的运算有一个交换律,这样我们可以把一长串的运算转换成一块一块的放到矩阵上之类的东西,然后拿数据结构维护. ...
- 「ZJOI2018」历史
「ZJOI2018」历史 前置知识 \(\text{LCT}\) 维护子树信息,考虑辅助树上一个节点的子树信息只是其代表的这一段链的信息,设 \(S(u)\) 为节点 \(u\) 的子树信息,那么在辅 ...
随机推荐
- python threading.current_thread().name和.getName()有什么区别
今天学到python多线程这块,想显示当前线程是主线程还是子线程.网上一搜,有个方法叫 threading.current().name 定海偶然 但是发现,同样的threading.current_ ...
- web开发(六) EL表达式
在网上看见一篇不错的文章,写的详细. 以下内容引用那篇博文.转载于<http://www.cnblogs.com/whgk/p/6432044.html>,在此仅供学习参考之用. 一.EL ...
- Python基本语法_输入/输出语句详解
目录 目录 前言 输入 raw_input input raw_input 和 input 的区别 输出 print print 基本格式化输出 print复杂格式化输出 flags标志位 width ...
- 【疑难杂症】【Solved】maven-compiler-plugin 在 idea 下的问题
maven-compiler-plugin 这个插件在idea和eclipse里表现本质是一样的,但是我之前有个细节没注意到,导致我对此有误解.我之前一直以为只要配置了source和target,相应 ...
- java:LeakFilling (SQL,JDBC)
1.JDBC中的sql里面不能加 :号,否则报错 2.Oracle数据必须提交后才可以使用JDBC进行操作,否则没有结果 3. JDBC插入序列: 首先在sequences建一个序列 insert i ...
- nginx源码包安装
一.下载码源包 1. 获得源码包途径官方网站,可以获得最新的软件包 Nginx: www.nginx.org 2.具体实例展示(tengine) 下载源码包,准备软件包 准备编译环境如编译器gcc.m ...
- 二叉平衡树AVL的插入与删除(java实现)
二叉平衡树 全图基础解释参考链接:http://btechsmartclass.com/data_structures/avl-trees.html 二叉平衡树:https://www.cnblogs ...
- backbone.js 教程(1) View & Model & Collection
Backbone.js Overview 它由Jeremy Ashkenas开发,最初发行于2010-10-13 它是一个轻量的JavaScript类库,只依赖于underscore.js,非强制依赖 ...
- c++ xml 解析“后直接跟值问题
c++ xml库相关 要解析内容: <ITEM name="SLSJ"head="SLSJ"/> 代码: GetNodeAttri(subnodes ...
- 项目附 - 云盘项目-分析echo.c
分析FastCGI源码目录下example中echo.c代码: /* * echo.c -- * * Produce a page containing all FastCGI inputs * * ...