A. DIY Wooden Ladder

题意:有一些不能切的木板,每个都有一个长度,要做一个梯子,求梯子的最大台阶数

做梯子的木板分为两种,两边的两条木板和中间的若干条台阶木板

台阶数为 $k$ 的梯子要求两边的木板长度大于等于 $k+1$ ,中间的木板数等于 $k$。

直接找到最大和次大的木板放两边,剩下的做台阶,设次大的木板长度为 $x$ ,台阶木板数为 $k$ 则答案就是 $min(x-1,k)$

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e6+;
int T,n,a[N];
int main()
{
T=read();
while(T--)
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
sort(a+,a+n+);
printf("%d\n",min(a[n-]-,n-));
}
return ;
}

A. DIY Wooden Ladder

B. Pillars

题意:有一排支柱,每个支柱恰好有一个圆盘,每个圆盘的大小各不相同,要求判断是否能把圆盘全部移到一个支柱上

移动的要求:$1.$ 只能移动到相邻圆盘. $2.$ 此支柱只有一个圆盘 $3.$ 要求移动到的支柱上的圆盘大小从下到上保持递减

由于条件 $2$ 和条件 $3$ 显然最终的支柱一定是初始时最大圆盘所在的支柱,然后容易发现最大支柱两边的圆盘大小一定要递减

不然就一定有位置移不动,否则一定可以移得完(每次把当前最大的圆盘一步步移动到最终位置即可)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+;
int n,a[N],pos;
int main()
{
n=read();
for(int i=;i<=n;i++)
{
a[i]=read();
if(a[i]>a[pos]) pos=i;
}
bool flag=;
for(int i=pos-;i;i--) if(a[i]>a[i+]) flag=;
for(int i=pos+;i<=n;i++) if(a[i]>a[i-]) flag=;
if(flag) printf("YES\n");
else printf("NO\n");
return ;
}

B. Pillars

C. Array Splitting

题意:一个正整数非减数列 $A$,要分成恰好 $K$ 个非空子序列,最终的价值即为每个子序列最大值与最小值差的和

求最优的划分方案使得总价值最小,输出最小价值

考虑一次划分的贡献,对于第 $0$ 次划分,总价值为 $A[n]-A[1]$(数列非减)

对于第一次划分,设划分位置为 $i,i+1$,则总价值为 $A[i]-A[1]\ +\ A[n]-A[i+1]$

第二次划分,位置为 $j$,不妨设 $j>i$,总价值为 $A[i]-A[1]\ +\ A[j]-A[i+1]\ +\ A[n]-A[j+1]$

发现对于每一次划分的位置 $k$ ,增加的价值比上一次划分多 $A[k]-A[k-1]$(为负数)

所以把所有 $A[i]-A[i+1]$ 排序取前 $K-1$ 小与初始的 $A[n]-A[1]$ 累加即可

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
// f[i][k]=min a[i]+(f[j][k-1]-a[j+1])
//a[n]-a[1]
//a[i]-a[1]+a[n]-a[i+1]
//a[j]-a[1]+a[i]-a[j+1]+a[n]-a[i+1]
const int N=2e6+;
priority_queue <int,vector<int>,greater<int> > Q;
int n,K,a[N],b[N],ans;
int main()
{
n=read(),K=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<n;i++) b[i]=a[i]-a[i+];
sort(b+,b+n); ans=a[n]-a[];
for(int i=;i<K;i++) ans+=b[i];
printf("%d\n",ans);
return ;
}

C. Array Splitting

D. Yet Another Subarray Problem

题意,给定一个整数列 $A$,要取出一个 '切片' $[l,r]$,切片的价值为 $(\sum_{i=l}^{r}A[i])-k\left \lceil \frac{r-l+1}{m} \right \rceil$

求最大价值

考虑 $m=1$ 时怎么做,显然可以贪心,维护右端点 $i$ 和当前数列的和 $now$ ,每次移动右端点 $i$ ,把 $A[i]-k$ 加入 $now$,如果 $now<0$ 则说明左端点到 $i$ 这一段没有贡献了,直接扔掉,然后 $now=0$,并在每次更新 $now$ 的时候更新全局答案 $ans$

发现考虑把数列每 $m$ 个看成一个块,用同样的方法贪心,发现这样只考虑了左端点在模 $m$ 意义下为 $1$ 的情况,但是因为 $m$ 不大,所以可以直接枚举模 $m$ 意义下左端点的位置,然后分别贪心

注意到右端点也只有考虑到与左端点同余的情况,所以枚举每一个块的时候都要考虑枚举当前右端点在块中的位置,同样更新就好了

看代码可能比较好理解吧...,注意 $long\ long$

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e6+;
int n,m,K,a[N];
vector <ll> V;//存每个块的和
ll ans;
int main()
{
n=read(),m=read(),K=read();
for(int i=;i<=n;i++) a[i]=read();
for(int i=;i<=m;i++)//枚举模m意义下的左端点
{
V.clear();
for(int j=i;j<=n;j+=m)//把块的值扔到vector里
{
ll t=;
for(int k=;k<m;k++) t+=a[j+k];
V.push_back(t-K);//记得'-K'
}
ll now=;//当前区间的值
for(int j=;j<V.size();j++)//枚举块
{
int pos=i+j*m; ll nnow=-K;//枚举右端点在当前块中的位置
for(int k=;k<m;k++) { nnow+=a[pos+k]; ans=max(ans,now+nnow); }//移动右端点
now+=V[j]; if(now<) now=;
ans=max(ans,now);
}
}
cout<<ans<<endl;
return ;
}

D. Yet Another Subarray Problem

怎么好像前 $4$ 题都是贪心...

Educational Codeforces Round 69 (Rated for Div. 2) A~D Sloution的更多相关文章

  1. Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code

    Educational Codeforces Round 69 (Rated for Div. 2) E. Culture Code 题目链接 题意: 给出\(n\)个俄罗斯套娃,每个套娃都有一个\( ...

  2. Educational Codeforces Round 69 (Rated for Div. 2)

                                                                                                  A. DIY ...

  3. Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 背包dp

    D. Yet Another Subarray Problem You are given an array \(a_1, a_2, \dots , a_n\) and two integers \( ...

  4. Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting 水题

    C. Array Splitting You are given a sorted array

  5. Educational Codeforces Round 69 (Rated for Div. 2)D(DP,思维)

    #include<bits/stdc++.h>using namespace std;int a[300007];long long sum[300007],tmp[300007],mx[ ...

  6. Educational Codeforces Round 69 (Rated for Div. 2) C. Array Splitting (思维)

    题意:给你一个长度为\(n\)的升序序列,将这个序列分成\(k\)段,每一段的值为最大值和最小值的差,求\(k\)段值的最小和. 题解:其实每一段的最大值和最小值的差,其实就是这段元素的差分和,因为是 ...

  7. Educational Codeforces Round 69 (Rated for Div. 2) D. Yet Another Subarray Problem 【数学+分块】

    一.题目 D. Yet Another Subarray Problem 二.分析 公式的推导时参考的洛谷聚聚们的推导 重点是公式的推导,推导出公式后,分块是很容易想的.但是很容易写炸. 1 有些地方 ...

  8. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  9. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

随机推荐

  1. localeCompare按首字母排序汉字

    sort() 方法用于对数组的元素进行排序. 如果想按照其他标准进行排序,就需要提供比较函数,该函数要比较两个值,然后返回一个用于说明这两个值的相对顺序的数字.比较函数应该具有两个参数 a 和 b,其 ...

  2. Jenkins必备插件

    1.汉化插件 https://plugins.jenkins.io/localization-zh-cn 2.邮件发送 https://plugins.jenkins.io/email-ext 3.G ...

  3. 使用CFStringTransform将汉字转换为拼音

    之前做通讯录相关的一些App时,有一个比较常用的算法是将汉字转换成拼音.当时采用的做法是:将各个拼音段的首个汉字(按Unicode排序)做成两个数组,一个数组存拼音,另一个数组存拼音对应首个汉字的Un ...

  4. ZOJ 3822 ( 2014牡丹江区域赛D题) (概率dp)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 题意:每天往n*m的棋盘上放一颗棋子,求多少天能将棋盘的每行每列都至少有 ...

  5. springboot启动报错start bean 'eurekaAutoServiceRegistration' NullPointerException

    解决方案参考:https://blog.csdn.net/hhj13978064496/article/details/82825365 我将eureka的依赖包放到了依赖包的最下面,启动报错, 如下 ...

  6. 修改MySQL表varchar字段的小实验

    将actor表的first_name的varchar(45) ,修改为varchar(60) [root@vhost1 ~]# mysql -uroot -p -S /mysqldata/tmp/my ...

  7. 牛客提高D3t1 破碎的矩阵

    分析 我们发现如果行的异或和等于列的异或和那么对于n-1行m-1列的所有数的选择都是任意的 因为一定可以在它的行末/列末选一个合适的数是的整体满足 但是我们发现对于右下角那一个数是否满足存疑 我们设矩 ...

  8. centos R包 tidyverse安装

    tidyverse安装失败,install.packages('tidyverse') 错误原因大概是其中有个依赖包xml2安装不上,解决办法是yum install libxml2-devel,这样 ...

  9. Visual Studio Code-使用Chrome Debugging for VS Code调试JS

    准备工作 安装 Debugger for Chrome 插件 按 F5(或选择菜单栏的 Debug->Start Debuging),然后选择 Chrome,就会自动创建默认的配置文件 &quo ...

  10. jenkins自动化打包报错:gradle: 未找到命令

    shell脚本如下: cd /home/wangju/gitProject/Automation echo "************************开始清理环境********** ...