给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值。

例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7。

输入格式

输入仅一行,包含两个整数n, k。

输出格式

输出仅一行,即j(n, k)。

数据范围

1≤n,k≤1091≤n,k≤109

输入样例:

5 3

输出样例:

7

题意:求题目所给的等式
思路:直接O(n)遍历肯定不行,我们尝试优化,首先我们 n%p = n - n/p*p 我们就可以把原式变成 n*p - 累加(1-m) n/i*i;
然后再利用除法分块原理能知道一段区间的除法值是一样的,然后用等差数列求和,然后得出值 除法分块:
begin=i;
end=n/(n/i);
首先n/i是被除后的值,然后我要最大的除值的最大下标位置,肯定是拿总和除以值就得出下标位置所在
#include<bits/stdc++.h>
#define maxn 200005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n,m;
int main(){
cin>>m>>n;
ll x=n*m;
ll sum=;
if(m>=n){
m=n;
}
for(int i=;i<=m;i=n/(n/i)+){
ll q=n/(n/i);
q=min(q,m);
ll z=(i+q)*(q-i+)/;
sum+=z*(n/i);
}
cout<<x-sum;
}
												

AcWing 199. 余数之和 (除法分块)打卡的更多相关文章

  1. bzoj1257[CQOI2007]余数之和(除法分块)

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Statu ...

  2. AcWing 199. 余数之和

    \(\sum_{i = 1}^{n} k \bmod i = n * k - \sum_{i = 1}^{n} \lfloor k / i \rfloor * i\) 显然,\(\lfloor k / ...

  3. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  4. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  5. bzoj 1257: [CQOI2007]余数之和 (数学+分块)

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...

  6. bzoj1257: [CQOI2007]余数之和 整除分块

    题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod ...

  7. bzoj 1257 余数之和 —— 数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...

  8. BZOJ1257: [CQOI2007]余数之和——整除分块

    题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod ...

  9. BZOJ1257 [CQOI2007]余数之和 (数论分块)

    题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k- ...

随机推荐

  1. STM32点LED灯

    一.建立项目模板 这里的user中重复引用了system_stm32f10x.c Output中选择Create HEXFile,并且可以选择输出路径. Listing中可以选择输出路径. 然后在C/ ...

  2. webpack配置教程

    1.npm脚本运行webpack与命令行输入webpack的区别  : https://segmentfault.com/a/1190000011052193   npm 模块的 安装 和 卸载  : ...

  3. Linux安装Oracle 10g

    目录 目录 环境 RHEL6 Configuration Update JDK 配置Oracle安装环境 硬件检测 软件检测 编辑配置文件 安装Oracle Database 环境 系统 RHEL6 ...

  4. Openstack组件部署 — keystone(domain, projects, users, and roles)

    目录 目录 前文列表 Create a domain projects users and roles domain projects users and roles的意义和作用 Create the ...

  5. CCflow与基础框架组织机构整合

    SELECT No,Name,Pass,FK_Dept,SID FROM Port_Emp SELECT No,Name,ParentNo FROM Port_Dept SELECT No,Name, ...

  6. Angularjs可以查看scope的插件AngularJS Batarang

    AngularJS Batarang是一个显示AngularJS的scope 层次的Chrome插件,有效的快速查看一个page 中有多少Scope能够帮助我们快速方便调试AngularJS程序. 插 ...

  7. 运维 07 Linux系统基础优化及常用命令

    Linux系统基础优化及常用命令   Linux基础系统优化 引言没有,只有一张图. Linux的网络功能相当强悍,一时之间我们无法了解所有的网络命令,在配置服务器基础环境时,先了解下网络参数设定命令 ...

  8. C/S and B/S

    C/S结构,即Client/Server(客户机/服务器)结构,是大家熟知的软件系统体系结构,通过将任务合理分配到Client端和Server端,降低了系统的通讯开销,可以充分利用两端硬件环境的优势. ...

  9. 利用HTML制作一个简单的界面(工具HBuilder)

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"><!--标题,里面填写 ...

  10. VC的小工具查询exe的依赖

    查看程序或动态库所依赖的动态库 dumpbin /dependents  abc.exe 查看动态库的输出函数 dumpbin /exports abc.dll