传送

一道看起来就很暴力的题。

这道题不仅暴力,还要用正确的姿势打开暴力。

因为子矩阵的参数有两个,一个行一个列(废话)

我们一次枚举两个参数很容易乱对不对?所以我们先枚举行,再枚举列

枚举完行,列,就计算一次当前子矩阵的分数,与ans取min。

代码:

但是复杂度会高到爆炸。来我们深吸一口O2

// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
int ma[][],n,m,r,c,ans=,ch[],cl[];
void js()
{ int an=;
for(int i=;i<=r;i++)//求子矩阵左右的差的绝对值
for(int j=;j<=c;j++)
an+=abs(ma[ch[i]][cl[j]]-ma[ch[i]][cl[j-]]);
for(int i=;i<=r;i++)//求上下的差的绝对值
for(int j=;j<=c;j++)
an+=abs(ma[ch[i]][cl[j]]-ma[ch[i-]][cl[j]]);
ans=min(ans,an);
}
void dfs(int x,int y,int nr,int nc)//x:当前枚举的行在原矩阵中是第x行,y:当前枚举的列在原矩阵中是第y列,nr:将要枚举的行的数量,nc:将要枚举的列的数量
{
if(nc==c+)
{
js();
return;
}
if((x>n&&nr!=r+)||(y>m&&nc!=c+))return ;
if(nr==r+)//当枚举完行了之后,枚举列
{
for(int i=y;i<=m;i++)
{
cl[nc]=i;
dfs(x,i+,nr,nc+);
}
}
else//枚举行
{
for(int i=x;i<=n;i++)
{
ch[nr]=i;
dfs(i+,y,nr+,nc);
}
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&ma[i][j]);
dfs(,,,);
printf("%d",ans);
}

TTTLE

还是T成这种美丽的图形

你看它T的多有美感

好了我们仔(ting)细(xue)思(zhang)考(jiang)怎么不吸氧通过剩下这几个点

能(xue)想(zhang)到(shuo)用dp来解决这道题。

但是这道题实在是太暴力了,所以我们还是得先暴力一下。

我们依旧先枚举行。然后对列进行dp。

设ver[i]为第i列的元素上下之差的绝对值之和,del[i][j]是第i列与第j列每行的元素之差的绝对值之和,d[i][j]为前i列,选择了j列,这j列中一定有第i列时的最小得分。

简单的画一下ver和del

ver:

每一个元素减上面那个元素的差的绝对值加起来就是ver

del:

每一行右边减左边的差的绝对值加起来就是del

我们考虑dp[i][j]的转移方程

dp[i][j]可以由dp[i-1][j-1]再选上第i列得到,可以由dp[i-2][j-1]再选第i列得到,可以由dp[i-3][j-1]得到……

所以状态转移方程就是dp[i][j]=min{dp[i][j],dp[i-k][j-1]+ver[i]+del[i-k][i]}(1<=k,i-k>=j-1)

最终答案就是dp[i][c](c<=i<=m)的最小值

#include<bits/stdc++.h>
using namespace std;
int ma[][],n,m,r,c,ans=,ver[],del[][],d[][],ch[];//ch是选择的行
void dp()
{
memset(d,,sizeof(d));//千万不要memset成0
memset(ver,,sizeof(ver));
memset(del,,sizeof(del));
for(int i=;i<=m;i++)//枚举第i列
for(int j=;j<=r;j++)//枚举行的编号
ver[i]+=abs(ma[ch[j]][i]-ma[ch[j-]][i]);
for(int i=;i<=m;i++)//第i列
for(int j=i+;j<=m;j++)//第j列
for(int k=;k<=r;k++)//枚举行(注意循环的顺序)
del[i][j]+=abs(ma[ch[k]][j]-ma[ch[k]][i]);
for(int i=;i<=m;i++)
d[i][]=ver[i];
for(int i=;i<=m;i++)
for(int j=;j<=c;j++)
for(int k=;k<i&&i-k>=j-;k++)
d[i][j]=min(d[i][j],d[i-k][j-]+ver[i]+del[i-k][i]); for(int i=c;i<=m;i++)
ans=min(ans,d[i][c]);
}
void dfs(int x,int nr)//x,nr的含义与爆搜的含义相同
{ if(nr==r+)
{
dp();
return;
}
if(x>n)return ;
for(int i=x;i<=n;i++)
{
ch[nr]=i;
dfs(i+,nr+);
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&ma[i][j]);
dfs(,);
printf("%d",ans);
}

P2258子矩阵的更多相关文章

  1. 洛谷 P2258 子矩阵 解题报告

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 2 . 4行和第 ...

  2. 洛谷P2258 子矩阵

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  3. P2258 子矩阵(dp)

    P2258 子矩阵 题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4 ...

  4. P2258 子矩阵——搜索+dp

    P2258 子矩阵 二进制枚举套二进制枚举能过多一半的点: 我们只需要优化一下第二个二进制枚举的部分: 首先我们先枚举选哪几行,再预处理我们需要的差值,上下,左右: sum_shang,sum_hen ...

  5. P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第 222 . 444 行和第 222 ...

  6. 洛谷 P2258 子矩阵

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  7. luogu P2258 子矩阵 |动态规划

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第22.44行和第22.44.55列交叉 ...

  8. 洛谷P2258 子矩阵[2017年5月计划 清北学堂51精英班Day1]

    题目描述 给出如下定义: 子矩阵:从一个矩阵当中选取某些行和某些列交叉位置所组成的新矩阵(保持行与列的相对顺序)被称为原矩阵的一个子矩阵. 例如,下面左图中选取第2.4行和第2.4.5列交叉位置的元素 ...

  9. 洛谷P2258 子矩阵 题解 状态压缩/枚举/动态规划

    作者:zifeiy 标签:状态压缩.枚举.动态规划 题目链接:https://www.luogu.org/problem/P2258 这道题目状态压缩是肯定的,我们需要用二进制来枚举状态. 江湖上有一 ...

随机推荐

  1. python+selenium下拉列表option对象操作方法二

    options = driver.find_elements_by_tag_name('option')                               #获取所有的option子元素 o ...

  2. java Map与Bean相互转化

    import java.beans.BeanInfo; import java.beans.IntrospectionException; import java.beans.Introspector ...

  3. win10系统Mysql5.7服务启动报:"1053错误:服务没有及时响应启动或控制请求"

    win10安装Mysql5.7: MySQL压缩包解压后,在目录下增加my.ini配置文件 [mysqld] port = basedir=D:\Mysql datadir=D:\Mysql\data ...

  4. 离线安装 Cloudera ( CDH 5.x )(转载)

    要配置生产环境前,最好严格按照官方文档/说明配置环境.比如,官方说这个安装包用于RETHAT6, CENTOS6,那就要装到6的版本下,不然很容易出现各种各样的错. 配置这个CDH5我入了很多坑: C ...

  5. vue2.0--axios的跨域问题

    鉴于这个问题,特地的提取了一个demo来进行截图说明. 一.根据官网的的安装流程安装vue-cli # 全局安装 vue-cli $ npm install --global vue-cli # 创建 ...

  6. 入门级,关于下载设置wamp的安装

    将wamp下载下来,分清楚自己电脑是32还是64位,在安装之前,首先确定你电脑里安装了vc++ 的运行库,不然安装wamp后会出现提醒缺少XXX文件,但是注意,在安装vc运行库的时候,请搜索集合包类的 ...

  7. poj1305 Fermat vs. Pythagoras(勾股数)

    题目传送门 题意: 设不定方程:x^2+y^2=z^2若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组.若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组. 定理:正整数x,y, ...

  8. html5实现拖拽上传

    <html><head> <meta http-equiv="Content-Type" content="text/html; chars ...

  9. BigDecimal 的用法

    1.初始化 BigDecimal discount=new BigDecimal(0.9); BigDecimal discount=new BigDecimal(200); 2.加减乘除 加法 ad ...

  10. JFreeChart与struts2整合实例

    1. 3个jar包 jcommon,jfreechart,strust2-jfreechart-plugin 2 <?xml version="1.0" encoding=& ...