理解PyTorch的自动微分机制
参考Getting Started with PyTorch Part 1: Understanding how Automatic Differentiation works
非常好的文章,讲解的非常细致。
注意这篇文章基于v0.3,其中的Variable和Tensor在后来把版本中已经合并。
from torch import FloatTensor
from torch.autograd import Variable
# Define the leaf nodes
a = Variable(FloatTensor([4]))
weights = [Variable(FloatTensor([i]), requires_grad=True) for i in (2, 5, 9, 7)]
# unpack the weights for nicer assignment
w1, w2, w3, w4 = weights
b = w1 * a
c = w2 * a
d = w3 * b + w4 * c
L = (10 - d)
L.backward()
for index, weight in enumerate(weights, start=1):
gradient, *_ = weight.grad.data
print(f"Gradient of w{index} w.r.t to L: {gradient}")

The computation graph is simply a data structure that allows you to efficiently apply the chain rule to compute gradients for all of your parameters.

注意:前向传播计算图的边的方向是数据的流向,后向传播计算图的边的方向是梯度传播的流向,这两者的方向正好是相反的。对于计算某个节点直接后继节点的梯度,就是直接后继节点到该节点边上的导数,对于计算某个非直接后继节点的梯度,就是从非直接后继节点到该节点所经过的所有边上导数的乘积。
Graph leaves or leaf variables
官方文档中的"Graph leave" or "leaf variables"指的就是前向计算图中没有前驱的节点a,或者是反向计算图中没有后继的节点a。对于这样的节点我们一定要把requires_grad设置为True,否则,这些变量将不会包含在计算图中,并且叶不会计算它们的梯度。
当Python执行到我们上面写的代码时,也就是执行到节点a,b,c,w1[2,3,4],d,L的定义时,a computation graph is being generated on the fly. 当计算图的output被从input计算出来时,每个变量(节点)的forward function会cache输入的值,这些值在反向计算梯度时会被用到。(For example, if our forward function computes W*x, then d(W*x)/d(W) is x, the input that needs to be cached)
现在我要说的就是前面画的计算图并不是非常准确的,因为当PyTorch制造一个计算图时,并不是把Variable objects (Tensor objects)作为计算图的节点,而是把Function objects,准确的说是每个Variable的grad_fn属性作为计算图的节点。所以PyTorch的计算图看起来是这样的:

上图中,我仍然把原来的leaf node用Variable objects来表示,虽然它们也有自己的grad_fn的属性(叶子节点的grad_fn返回的是None。这很好理解,因为你不能在叶子节点上进行反向传播)。剩下的节点现在用它们的grad_fn来表示。我们可以看到有个节点d被用三个Functions(两个乘法一个加法)代替。
L节点对于任意叶子节点的梯度都可以通过该节点对应的Variable的.grad来访问(PyTorch默认的行为不允许访问非叶子节点的梯度)。
w1 = w1 — (learning_rate) * w1.grad #update the wieghts using GD
前面我说不能访问非叶子节点的梯度,这是Pytorch的默认行为。但是你可以改变这个默认行为,只要你在定义Variable后调用该Variable的.retain_grad(),你就可以访问它的grad属性。
import torch
x = torch.tensor([1., 1, 1, 1], requires_grad=True)
y = 2*x
z = y.mean()
z.backward()
print(x.grad, y.grad, z.grad)
'''
tensor([0.5000, 0.5000, 0.5000, 0.5000]) None None
'''
import torch
x = torch.tensor([1., 1, 1, 1], requires_grad=True)
y = 2*x
y.retain_grad()
z = y.mean()
z.retain_grad()
z.backward()
print(x.grad, y.grad, z.grad)
'''
tensor([0.5000, 0.5000, 0.5000, 0.5000]) tensor([0.2500, 0.2500, 0.2500, 0.2500]) tensor(1.)
'''
Dynamic Computation Graph
Pytorch 计算图的产生方式是 on the fly (不需要准备,随定义立即产生)。直到一个Variable(Tensor)的 forward function被调用之前,计算图中都不存在这个Variable(或者说是它的grad_fn) 的节点。计算图的产生是许多Variable被调用的结果。在那时,buffers会分配给计算图和中间值(用来后面计算梯度)。当你调用.backward(),梯度被计算出来后,这些buffers就被释放了,并且计算图被破坏了。你可以尝试在一个计算图上调用.backward()多次,你将会看到pytorch将会给你一个error。这时因为计算图在第一次调用backward()后就被销毁了,因此在第二次调用backward时是不存在计算图的。
如果你再一次调用forward,一个全新的计算图被产生。
这和Static Computation Graphs(TensorFlow使用的)是截然不同的,其中的静态图在执行程序之前要定义好。动态图机制允许你在运行时改变网络的架构,因为一个动态图仅仅在一段代码执行时产生。这意味着一个计算图可能在程序执行过程中被重复定义多次。动态图是debug更简单,更容易追踪错误来源。
Some Tricks of Trade
requires_grad 是Variable的一个属性,默认为False。这个属性在你不得不冻结某些layers并且阻止layers上的参数在训练中更新时是很方便的。你可以简单的将requires_grad设置为False,这样这些Variables将不会包括在计算图中。因此,没有梯度会传播到它们。

volatile 是Variable的另外一个属性,它会造成一个Variable从计算图中剔除当它被设置为True时。它和requires_grad是非常相似的,因为当它被设置为True时是具有传染性的。但是它比起requires_grad有一个更高的优先级,也就是一个Variable的requires_grad=True并且volatile=True,这个Variable就不会被包含到计算图中。
你可能会想为什么需要另外一个开关来覆盖requires_grad的值,而不是简单的将requires_grad设置为False,下面就说明原因。
当我们做推理(forward过程)而不需要梯度时,不去创建计算图是非常必要的。首先,创建计算图的开销可以消除,而且速度会提升。第二,如果我们创建一个计算图但是不调用backward(),用来缓存的buffers就不会被释放,这会导致你耗尽内存。
通常,我们的神经网络有许多层,我们在训练时可能会把requires_grad设置为True。为了避免在 inference时产生计算图,我们可以做两件事:1. 把所有layers的requires_grad设置为False; 2. 将input的volatile设置为True,这样可以保证后面的操作不会产生计算图。

No graph is created for b or any node that depends on b.
Note: Pytorch v0.4 has no volatile argument for a combined Tensor/Variable class. Instead, the inference code should be put in a torch.no_grad() context manager.
with torch.no_grad():
# write your inference code here
So, that was Autograd for you. Understanding how Autograd works can save you a lot of headache when you’re stuck somewhere, or dealing with errors when you’re starting out.
理解PyTorch的自动微分机制的更多相关文章
- 【tensorflow2.0】自动微分机制
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.Gradi ...
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- Pytorch Autograd (自动求导机制)
Pytorch Autograd (自动求导机制) Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心. 本文通过logisti ...
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- PyTorch 自动微分示例
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- MindSpore:自动微分
MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...
- ArrayList源码解析(二)自动扩容机制与add操作
本篇主要分析ArrayList的自动扩容机制,add和remove的相关方法. 作为一个list,add和remove操作自然是必须的. 前面说过,ArrayList底层是使用Object数组实现的. ...
- 附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...
随机推荐
- LCT做题笔记
最近几天打算认真复习LCT,毕竟以前只会板子.正好也可以学点新的用法,这里就用来写做题笔记吧.这个分类比较混乱,主要看感觉,不一定对: 维护森林的LCT 就是最普通,最一般那种的LCT啦.这类题目往往 ...
- C++ 二阶构造模式
1.如何判断构造函数的执行结果? 构造函数没有返回值,所以不能通过返回值来判断是构造函数是否构造成功. 如果给构造函数强行加入一个返回值,用来表示是否构造成功.这样确实能够反映出构造的结果,但是不够优 ...
- Java Integer中的IntegerCache小记
同事今天给我发了一个关于Java拆装箱的ppt,里面有这么一段代码 Integer c = Integer.valueOf(3); Integer d = Integer.valueOf(3); ...
- Java基础(那些习以为常缺不知道原理的地方)
一.基础 1.1 正确的使用equals方法 Object的equals方法容易抛空指针异常,应使用常量或确定有值的对象来调用 equals.如下代码 // 不能使用一个值为null的引用类型变量来调 ...
- vue中添加与删除,关键字搜索
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 2.bat文件的基本用途
一.调用可执行的jar文件. 详见:https://www.cnblogs.com/lukelook/p/8683352.html
- 记一次nodemanager无法启动的情况
早上看CDH发现有一个nodemanager挂掉 然后查看对应的日志. 发现在日志里面并没有错误.,然然后发现服务器的磁盘满了,赶紧清理磁盘空间 清理磁盘的时候发现主要是/tmp目录下面生成了很多 ...
- 微信小程序获得高度
wx.getSystemInfo({ success: (res) => { wx.createSelectorQuery().select('#scrollbox').boundingClie ...
- Docker架构及其三要素
1.Docker架构 a.Docker客户端和服务端 Docker是客户-服务器(C/S)架构的程序.Docker客户端只需向Docker服务器或守护进程发出请求,服务器或守护进程将完成所有工作并 ...
- Linux: df du
df :列出文件系统的整体磁盘使用量 du :评估文件系统的磁盘使用量(常用在推估目录所占容量) 1 df :[-ahikHTm] 目录或文件名 选项或参数: -a: 列出所有的文件系统,包括系统 ...