46、tensorflow入门初步,手写识别0,1,2,3,4,5,6
1、使用tensorflow的SoftMax函数,对手写数字进行识别
Administrator@SuperComputer MINGW64 ~
$ docker run -it -p 8888:8888 registry.cn-hangzhou.aliyuncs.com/denverdino/tens
orflow bash
root@b3e200093da9:/notebooks# python
Python 2.7.6 (default, Oct 26 2016, 20:30:19)
[GCC 4.8.4] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.examples.tutorials.mnist import input_data
-----------------------------------------------------------对于中间这个数据是怎么来的,我只能说是从网上下的,具体存放在哪个文件间中,我至今都没有找到
>>> mnist = input_data.read_data_sets("/MNIST_data/",one_hot = True)
Successfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.
Extracting /MNIST_data/train-images-idx3-ubyte.gz
Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.
Extracting /MNIST_data/train-labels-idx1-ubyte.gz
Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.
Extracting /MNIST_data/t10k-images-idx3-ubyte.gz
Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.
Extracting /MNIST_data/t10k-labels-idx1-ubyte.gz
>>> import tensorflow as tf
>>> x = tf.placeholder(tf.float32,[None,784])
>>> W = tf.Variable(tf.zeros([784,10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.nn.softmax(tf.matmul(x,W)+b)
>>> y_ = tf.placeholder(tf.float32,[None,10])
>>> cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y),reduction_indices=[1]))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>> init = tf.initialize_all_variables()//这个函数现在已经不用了,应该使用下边的那一行函数
WARNING:tensorflow:From <stdin>:1 in <module>.: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
>>> init = tf.global_variables_initializer()
>>> sess = tf.Session()
>>> sess.run(init)
>>> for i in range(1000):
... batch_xs,batch_ys = mnist.train.next_batch(100)
... sess.run(train_step,feed_dict = {x:batch_xs,y_:batch_ys})
...
>>> correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
>>> print(sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels}
))
0.9167
>>>
最后,训练后得到的模型在测试数据上的正确率是0.9167
46、tensorflow入门初步,手写识别0,1,2,3,4,5,6的更多相关文章
- TensorFlow 入门之手写识别(MNIST) softmax算法
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow 入门之手写识别CNN 三
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 ...
- TensorFlow 入门之手写识别(MNIST) softmax算法 二
TensorFlow 入门之手写识别(MNIST) softmax算法 二 MNIST Fly softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算 ...
- TensorFlow 入门之手写识别(MNIST) 数据处理 一
TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备 ...
- TensorFlow MNIST(手写识别 softmax)实例运行
TensorFlow MNIST(手写识别 softmax)实例运行 首先要有编译环境,并且已经正确的编译安装,关于环境配置参考:http://www.cnblogs.com/dyufei/p/802 ...
- 使用tensorflow实现mnist手写识别(单层神经网络实现)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import n ...
- 基于tensorflow的MNIST手写识别
这个例子,是学习tensorflow的人员通常会用到的,也是基本的学习曲线中的一环.我也是! 这个例子很简单,这里,就是简单的说下,不同的tensorflow版本,相关的接口函数,可能会有不一样哟.在 ...
- densenet tensorflow 中文汉字手写识别
densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...
- 基于tensorflow实现mnist手写识别 (多层神经网络)
标题党其实也不多,一个输入层,三个隐藏层,一个输出层 老样子先上代码 导入mnist的路径很长,现在还记不住 import tensorflow as tf import tensorflow.exa ...
随机推荐
- 【Angular】No component factory found for ×××.
报错现象: 用modal打开某个组件页面时报错 报错:No component factory found for UpdateAuthWindowComponent. Did you add it ...
- 【玩转SpringBoot】异步任务执行与其线程池配置
同步代码写起来简单,但就是怕遇到耗时操作,会影响效率和吞吐量. 此时异步代码才是王者,但涉及多线程和线程池,以及异步结果的获取,写起来颇为麻烦. 不过在遇到SpringBoot异步任务时,这个问题就不 ...
- day 67 Django的view 与路由
一.Django中的视图 CBV和FBV 我们之前写过的都是基于函数的view,就叫FBV.还可以把view写成基于类的. url(r'^add_publisher/',views.AddPublis ...
- BootStrap的一些基本语法
一, 1.@using :引入命名空间 2.@model:声明强类型的数据 Model 类型 3.@section:定义要实现母版页的节信息 4.@RenderBody():当创建基于此布局页面的视图 ...
- 实验报告(七)&第九周课程总结
班级 计科二班 学号 20188425 姓名 IM 完成时间2019/10/24 评分等级 实验任务详情: 完成火车站售票程序的模拟. 要求: (1)总票数1000张: (2)10个窗口同时开始卖票: ...
- DataX简介
DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL.Oracle.SqlServer.Postgre.HDFS.Hive.ADS.HBase.TableStore(O ...
- Android关于界面一定时间无操作自动跳转到指定界面的实现
主要用到的功能,自定义一个定时器CountTimer继承CountDownTimer. public class CountTimer extends CountDownTimer { private ...
- showkey - 检查来自键盘的扫描码和键盘码
览 (SYNOPSIS) showkey [ -[hVskm] | --help | --version | --scancodes | --keycodes | --keymap ] [ -t N ...
- Hdu-3333 Turning Tree (离线树状数组/线段树)
Hdu-3333 Turning Tree 题目大意:先给出n个数字.面对q个询问区间,输出这个区间不同数的和. 题解:这道题有多重解法.我另一篇博客写了分块的解法 HDU-3333 Turing ...
- Codeforces 362E 费用流
题意及思路:https://blog.csdn.net/mengxiang000000/article/details/52472696 代码: #define Hello the_cruel_wor ...