题意:给定一个n个点m条边的加权有向图,求平均权值最小的回路。

思路:使用二分法求解。对于每个枚举值mid,推断每条边权值减去mid后有无负圈就可以。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#define eps 1e-4
#define LL long long
using namespace std; const int maxn = 100 + 5;
const int INF = 0x3f3f3f3f; //Bellman-Ford算法
struct Edge {
int from, to;
double dist;
Edge(int u = 0, int v = 0, double d = 0) : from(u), to(v), dist(d) {
}
};
struct BellmanFord{
int n, m;
vector<Edge> edges;
vector<int> G[maxn];
bool inq[maxn];
double d[maxn];
int p[maxn];
int cnt[maxn]; void init(int n) {
this->n = n;
for(int i = 0; i < n; i++) G[i].clear();
edges.clear();
} void AddEdges(int from, int to, int dist) {
edges.push_back(Edge(from, to, dist));
m = edges.size();
G[from].push_back(m-1);
} bool negetiveCycle() {
queue<int> Q;
memset(inq, 0, sizeof(inq));
memset(cnt, 0, sizeof(cnt));
for(int i = 0; i < n; i++) {
d[i] = 0; inq[0] = true; Q.push(i);
}
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = false;
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(d[e.to]>d[u]+e.dist) {
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
if(!inq[e.to]) {
Q.push(e.to);
inq[e.to] = true;
if(++cnt[e.to] > n) return true;
}
}
}
}
return false;
} } solver; int n, m;
bool test(double w) {
for(int i = 0; i < m; i++) solver.edges[i].dist -= w;
int t = solver.negetiveCycle();
for(int i = 0; i < m; i++) solver.edges[i].dist += w;
return t;
} int kase;
int main() {
freopen("input.txt", "r", stdin);
int t; cin >> t;
while(t--) {
cin >> n >> m;
solver.init(n);
for(int i = 0; i < m; i++) {
int u, v, d;
cin >> u >> v >> d;
u--; v--;
solver.AddEdges(u, v, d);
}
double L = -10000001, R = 10000001;
if(!test(R)) printf("Case #%d: No cycle found.\n", ++kase);
else {
while(R-L>eps) {
double M = (R+L)/2;
if(test(M)) R = M;
else L = M;
}
printf("Case #%d: %.2lf\n", ++kase, R);
}
}
return 0;
}

UVA 11090 Going in Cycle!!(Bellman-Ford推断负圈)的更多相关文章

  1. UVA 11090 - Going in Cycle!!(Bellman-Ford)

    UVA 11090 - Going in Cycle!! option=com_onlinejudge&Itemid=8&page=show_problem&category= ...

  2. UVA - 11090 - Going in Cycle!!(二分+差分约束系统)

    Problem  UVA - 11090 - Going in Cycle!! Time Limit: 3000 mSec Problem Description You are given a we ...

  3. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  4. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  5. UVA 11090 Going in Cycle!! SPFA判断负环+二分

    原题链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  6. UVA 11090 - Going in Cycle!! SPFA

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  7. UVa 11090 Going in Cycle!!【Bellman_Ford】

    题意:给出n个点m条边的加权有向图,求平均值最小的回路 自己想的是用DFS找环(真是too young),在比较找到各个环的平均权值,可是代码实现不了,觉得又不太对 后来看书= =好巧妙的办法, 使用 ...

  8. UVA 11090 Going in Cycle!!(二分答案+判负环)

    在加权有向图中求平均权值最小的回路. 一上手没有思路,看到“回路”,第一想法就是找连通分量,可又是加权图,没什么好思路,那就转换题意:由求回路权值->判负环,求最小值->常用二分答案. 二 ...

  9. UVA 11090 Going in Cycle!! 环平均权值(bellman-ford,spfa,二分)

    题意: 给定一个n个点m条边的带权有向图,求平均权值最小的回路的平均权值? 思路: 首先,图中得有环的存在才有解,其次再解决这个最小平均权值为多少.一般这种就是二分猜平均权值了,因为环在哪也难以找出来 ...

随机推荐

  1. 转:IOS推送代码

    实例:调用方法:- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary ...

  2. Redisclient连接方式Hiredis简单封装使用,连接池、屏蔽连接细节

    工作须要对Hiredis进行了简单封装,实现功能: 1.API进行统一,对外仅仅提供一个接口. 2.屏蔽上层应用对连接的细节处理: 3.底层採用队列的方式保持连接池,保存连接会话. 4.重连时採用时间 ...

  3. Activity 之间 传递 List 封装的对象或者对象

    项目中遇到 从也个页面向还有一个页面跳转传递一个List 封装的对象 .按网上查的资料 须要把 对象 实现 Serializable接口. 写了一下.可是跳转直接崩溃.一直看错误之日找不到原因后来自习 ...

  4. Sparse Coding: Autoencoder Interpretation

    稀疏编码 在稀疏自编码算法中,我们试着学习得到一组权重参数 W(以及相应的截距 b),通过这些参数可以使我们得到稀疏特征向量 σ(Wx + b) ,这些特征向量对于重构输入样本非常有用. 稀疏编码可以 ...

  5. 【转】BAT取当前日期的前一天

    ============================取前一天的日期       OK============================@echo off ::前一天的日期,格式化输出echo ...

  6. 51Nod 1006 最长公共子序列Lcs问题 模板题

    给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为:   abcicba abdkscab   ab是两个串的子序列,abc也是,abca也是,其中abca是这两个 ...

  7. 程序中为什么会使用while(0)

    https://blog.csdn.net/u012062760/article/details/46446207 关于while(0)实际上是用来宏定义的,这样的宏定义可以避免调用的时候出错. 如下 ...

  8. 百度Echarts-免费的商业产品图表库

    官方网站:http://echarts.baidu.com/ 民间网站:http://fansunion.cn/echarts/ 下载地址:https://codeload.github.com/ec ...

  9. POJ——T 3461 Oulipo

    http://poj.org/problem?id=3461 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 42698   ...

  10. Android学习笔记进阶17之LinearGradient

    具体的看一下博文:Android学习笔记进阶15之Shader渲染 package xiaosi.BitmapShader; import android.app.Activity; import a ...