题目描述

一个数字的数字根定义为:这个数字每一位的数字加起来求和,反复这个过程直到和小于10。例如,64357的数字跟为7,因为6+4+3+5+7=25,2+5=7个区间的数字根定义为这个区间所有数字和的数字根。

给定一个序列A1,A2,A3,…,An,你需要回答一些询问。每一个询问给定个区间[L,R],求出这个区间所有连续子区间里最大的前5个不同的数字根,不够5个的用-1补全

输入输出格式

输入格式:

第一行一个整数N,表示序列的长度。第二行是N个整数Ai(0≤Ai<10^9)。第三行是一个整数Q表示询问次数。接下来Q行,每一行两个正整数1,r,表示询问区间。(1≤l≤r≤N)

输出格式:

Q行,表示每一个查询区间所有连续子区间里最大的前5个不同的数字根,按降序输出,输出用空格隔开。

输入输出样例

输入样例#1:
5

101 240 331 4 52
3
1 3
4 5
1 5
输出样例#1:

8 7 6 4 2
7 4 2 -1 -1
9 8 7 6 4

说明

样例解释

第一个查询区间[1,3],它的连续子区间有[1,1],[2,2],[3,3],[1,2],[2,3],[1,3].可对应的数字根分别为2,6,7,8,4,6。所以最大的5个是8,7,6,4,2。

数据范围

30%的数据,N ≤ 1000; Q ≤ 1000

100%的数据,N ≤ 100000; Q ≤ 100000

解法

感觉懂了数字根是什么就会做这个题了。(我去征求VANE的意见时,发现他也不懂数字根,他和我说要记忆化搜索……)

(虽然我也不懂,问了百度。)

结论就是   数字根=各位加在一起%9  (如果是0就=9)

现在有了思路,以后有了证明再补吧。

于是就预处理前缀和,暴力枚举[L,R]内的子区间,因为答案只有0~9,而且只要求你输出前5个,当你已经找到5,6,7,8,9时就可以退出了,

所以这么暴力的做法是超不了时的

#include<bits/stdc++.h>
#define MAXN 100005
using namespace std;
int read(){
int x=;char c=getchar();
while(c<''||c>'')c=getchar();
while(c>=''&&c<=''){x+=c-'';c=getchar();}
return x;
}
int N,Q,l,r,a[MAXN],s[MAXN];
bool b[];
void query(){
memset(b,,sizeof b);
int k=;
l=read(),r=read();
for(int i=l;i<=r;i++)
for(int j=i;j<=r;j++){
int tmp=(s[j]-s[i-])%;
tmp?b[tmp]=:b[]=;
if(b[]&&b[]&&b[]&&b[]&&b[]){
printf("9 8 7 6 5 \n");
return ;
}
}
for(int i=;i>=;i--)
if(k&&b[i])printf("%d ",i),k--;
for(int i=;i<=k;i++)printf("-1 ");
printf("\n");
}
int main()
{
N=read();
for(int i=;i<=N;i++)
a[i]=read(),s[i]=s[i-]+a[i];
Q=read();
while(Q--)query();
return ;
}

洛谷3962 [TJOI2013]数字根的更多相关文章

  1. 洛谷 P3962 [TJOI2013]数字根 解题报告

    P3962 [TJOI2013]数字根 题意 数字根:这个数字每一位的数字加起来求和,反复这个过程直到和小于10. 给出序列\(a\),询问区间\([l,r]\)连续的子区间里最大前5个不同的数字根, ...

  2. 洛谷P1102 A-B数对

    洛谷P1102 A-B数对 https://www.luogu.org/problem/show?pid=1102 题目描述 出题是一件痛苦的事情! 题目看多了也有审美疲劳,于是我舍弃了大家所熟悉的A ...

  3. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  4. TJOI2013数字根

    题面链接 洛谷 sol 我们先不考虑\(0\),发现数字根\(=\)它\(mod 9\). 我们前缀和一波,把区间和变成两数相减. 对于每个\(v\in\{0-8\}\),(这里面的\(mod 9=0 ...

  5. 洛谷 P1392 取数

    题面 在做这道题前,先要会他的弱化版(实际一模一样,只是愚蠢的洛谷评测级别差了一档(睿智如姬无夜)) ----------------------------------弱化版------------ ...

  6. 洛谷——P2421 A-B数对(增强版)

    题目背景 woshiren在洛谷刷题,感觉第一题:求两数的和(A+B Problem)太无聊了,于是增加了一题:A-B Problem,难倒了一群小朋友,哈哈. 题目描述 给出N 个从小到大排好序的整 ...

  7. 洛谷 P5206 - [WC2019]数树(集合反演+NTT)

    洛谷题面传送门 神仙多项式+组合数学题,不过还是被我自己想出来了( 首先对于两棵树 \(E_1,E_2\) 而言,为它们填上 \(1\sim y\) 使其合法的方案数显然是 \(y\) 的 \(E_1 ...

  8. Luogu P3962 [TJOI2013]数字根 st

    题面 我先对数字根打了个表,然后得到了一个结论:\(a\)的数字根=\((a-1)mod 9+1\) 我在询问大佬后,大佬给出了一个简单的证明: \(\because 10^n\equiv 1(mod ...

  9. 【题解】洛谷P3166 [CQOI2014] 数三角形(组合+枚举)

    洛谷P3166:https://www.luogu.org/problemnew/show/P3166 思路 用组合数求出所有的3个点组合(包含不合法的) 把横竖的3个点共线的去掉 把斜的3个点共线的 ...

随机推荐

  1. oracle-常见的执行计划(一)

    一.表访问方式 CBO基础概念中有讲到,访问表的方式有两种:全表扫描和ROWID扫描. 全表扫描的执行计划:TABLE ACCESS FULL ROWID扫描对应执行计划:TABLE ACCESS B ...

  2. MEF基本概念

    基本概念: Managed Extensibility Framework 或 MEF 是一个用于创建可扩展的轻型应用程序的库,在.NET 4.0发布 Container:容器,使用Compositi ...

  3. 《汇编语言(第三版)》cmp指令

    # cmp指令 本质 cmp是比较指令,cmp的功能相当于减法. 格式 cmp 操作对象1,操作对象2 功能 计算操作对象1-操作对象2,但并不保存结果,可以根据flag标志寄存器来判断结果. 正向判 ...

  4. python中index、slice与slice assignment用法

    python中index.slice与slice assignment用法 一.index与slice的定义: index用于枚举list中的元素(Indexes enumerate the elem ...

  5. 数据库用varchar存储时间时会出现时间差解决办法

    用varchar存储时间,最后提取数据库时间字段会出现时间差问题. 当我们调用数据库时间字段时,会出现时间差,使得查询的数据查询不到,解决办法如下 CAST( 字段名as DATE) between ...

  6. Angualr+asp.net core webapi+efcore系列

    想着学习一门前端框架,WTF,看了又看,卧槽对于.Net程序员来说,还有什么比面向对象更香的呢,所以果断的选择了Angular.正好看各路大神以及官方文档想学习一下asp.net core,那就搞起吧 ...

  7. (2016北京集训十)【xsy1528】azelso - 概率期望dp

    北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...

  8. 【BZOJ4002】[JLOI2015]有意义的字符串 - 矩阵乘法

    题意: 给出b,d,n,求$\lfloor(\frac{b+\sqrt{d}}{2})^n\rfloor \mod 999999999999999989$(原题是7528443412579576937 ...

  9. 地图底图的类型——MapView,SceneView

    MapView用于创建二维地图平面. 引用“esri/Map”,"esri/views/MapView" 具体做法并举例:var map = new Map({basemap:&q ...

  10. @GetMapping、@PostMapping、@PutMapping、@DeleteMapping、@PatchMapping

    @GetMapping.@PostMapping.@PutMapping.@DeleteMapping.@PatchMapping  @GetMapping是一个组合注解,是@RequestMappi ...