Java并发包探秘 (一) ConcurrentLinkedQueue
本文是Java并发包探秘的第一篇,旨在介绍一下Java并发容器中用的一些思路和技巧,帮助大家更好的理解Java并发容器,让我们更好的使用并发容器打造更高效的程序。本人能力有限,错误难免。希望及时指出。
Java并发包中有很多精心设计的高并发容器。有ConcurrentHashMap、ConcurrentSkipListMap
、ConcurrentLinkedQueue等。ConcurrentLinkedQueue就是其中设计最为优雅的高并发容器。它被设计成了无锁的、无界的、非阻塞式的单向链表结构。现在就让我们来一步一步揭开他们神秘的面纱。
正文开始:
一说到链表结构,我们首先就会想到的就是组成链表结构的原件,那就是节点。或者有的人称之为元素。ConcurrentLinkedQueue(为了叙述方便后面用CLQ指代)中称之为Node.
我们先来看看CLQ中Node的结构:
- private static class Node<E> {
- private volatile E item;
- private volatile Node<E> next;
- private static final
- AtomicReferenceFieldUpdater<Node, Node>
- nextUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (Node.class, Node.class, "next");
- private static final
- AtomicReferenceFieldUpdater<Node, Object>
- itemUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (Node.class, Object.class, "item");
- Node(E x) { item = x; }
- Node(E x, Node<E> n) { item = x; next = n; }
- E getItem() {
- return item;
- }
- boolean casItem(E cmp, E val) {
- return itemUpdater.compareAndSet(this, cmp, val);
- }
- void setItem(E val) {
- itemUpdater.set(this, val);
- }
- Node<E> getNext() {
- return next;
- }
- boolean casNext(Node<E> cmp, Node<E> val) {
- return nextUpdater.compareAndSet(this, cmp, val);
- }
- void setNext(Node<E> val) {
- nextUpdater.set(this, val);
- }
- }
- private static class Node<E> {
- private volatile E item;
- private volatile Node<E> next;
- private static final
- AtomicReferenceFieldUpdater<Node, Node>
- nextUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (Node.class, Node.class, "next");
- private static final
- AtomicReferenceFieldUpdater<Node, Object>
- itemUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (Node.class, Object.class, "item");
- Node(E x) { item = x; }
- Node(E x, Node<E> n) { item = x; next = n; }
- E getItem() {
- return item;
- }
- boolean casItem(E cmp, E val) {
- return itemUpdater.compareAndSet(this, cmp, val);
- }
- void setItem(E val) {
- itemUpdater.set(this, val);
- }
- Node<E> getNext() {
- return next;
- }
- boolean casNext(Node<E> cmp, Node<E> val) {
- return nextUpdater.compareAndSet(this, cmp, val);
- }
- void setNext(Node<E> val) {
- nextUpdater.set(this, val);
- }
- }
1.CLQ中的Node定义成了私有的静态类说明该节点描述只适用在CLQ中。
2.其中用到了AtomicReferenceFieldUpdater原子属性引用原子更新器。该类是抽象的,但该类的内部已经给出了包访问控制级别的一个实现AtomicReferenceFieldUpdaterImpl,原理是利用反射将一个被声明成
volatile 的属性通过Java native interface
(JNI)调用,使用cpu指令级的命令将一个变量进行更新,该操作是原子的。atomic
包中还有很多类似的更新器分别针对不同的类型进行原子级别的比较更新原子操作。这里用到了sun.misc.Unsafe 的
compareAndSwap操作(简称CAS)它有三种不同的本地命令分别针对Int、Long、Object进行原子更新操作。
3.我们可以看出CLQ中的Node结构是一个单向的链表结构,因为每个Node只有一个向后的next和一个item用来装内容。CLQ将通过casNext和casItem方法来原子更新Node链的结构。setNext 和setItem则是直接放入
我们再来看CLQ的链结构
- private static final
- AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
- tailUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (ConcurrentLinkedQueue.class, Node.class, "tail");
- private static final
- AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
- headUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (ConcurrentLinkedQueue.class, Node.class, "head");
- private boolean casTail(Node<E> cmp, Node<E> val) {
- return tailUpdater.compareAndSet(this, cmp, val);
- }
- private boolean casHead(Node<E> cmp, Node<E> val) {
- return headUpdater.compareAndSet(this, cmp, val);
- }
- /**
- * Pointer to header node, initialized to a dummy node. The first
- * actual node is at head.getNext().
- */
- private transient volatile Node<E> head = new Node<E>(null, null);
- /** Pointer to last node on list **/
- private transient volatile Node<E> tail = head;
- private static final
- AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
- tailUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (ConcurrentLinkedQueue.class, Node.class, "tail");
- private static final
- AtomicReferenceFieldUpdater<ConcurrentLinkedQueue, Node>
- headUpdater =
- AtomicReferenceFieldUpdater.newUpdater
- (ConcurrentLinkedQueue.class, Node.class, "head");
- private boolean casTail(Node<E> cmp, Node<E> val) {
- return tailUpdater.compareAndSet(this, cmp, val);
- }
- private boolean casHead(Node<E> cmp, Node<E> val) {
- return headUpdater.compareAndSet(this, cmp, val);
- }
- /**
- * Pointer to header node, initialized to a dummy node. The first
- * actual node is at head.getNext().
- */
- private transient volatile Node<E> head = new Node<E>(null, null);
- /** Pointer to last node on list **/
- private transient volatile Node<E> tail = head;
1.实际上经过对Node的分析。CLQ中的头尾指针的更新原理其实也是一样的。都是通过cpu原子操作命令进行的更新。
2.这样我们就有了在高并发下原子更新的基础支持,但是除了原子更新的支持是不够的。原因很简单,这是因为当多个线程同时使用原子更新操作来更新一个链表结构的时候只有一个成功其它的都会失败。失败的操作如何再让它成功才是问题的关键。CLQ优雅的解决了这一问题。
我们再来看看CLQ的放入元素操作:
- public boolean offer(E e) {
- if (e == null) throw new NullPointerException();
- Node<E> n = new Node<E>(e, null);
- for (;;) { //1
- Node<E> t = tail; //2
- Node<E> s = t.getNext(); //3
- if (t == tail) { //4
- if (s == null) { //5
- if (t.casNext(s, n)) { //6
- casTail(t, n); //7
- return true; //8
- }
- } else {
- casTail(t, s); //9
- }
- }
- }
- }
- public boolean offer(E e) {
- if (e == null) throw new NullPointerException();
- Node<E> n = new Node<E>(e, null);
- for (;;) { //1
- Node<E> t = tail; //2
- Node<E> s = t.getNext(); //3
- if (t == tail) { //4
- if (s == null) { //5
- if (t.casNext(s, n)) { //6
- casTail(t, n); //7
- return true; //8
- }
- } else {
- casTail(t, s); //9
- }
- }
- }
- }
在有锁得情况下我们只要让获得锁得线程更新,其它线程等待即可解决并发更新的问题,但是在上述的单向链表结构中有更好的无锁解决方法。
1.代码1 啊! 死循环,对,就是利用反复轮询的重复一段逻辑操作。
2.代码2 代码3 先用两个临时变量指向CLQ的尾和尾的下一个节点。这样有什么好处?直接用tail和tail.getNext不行吗?我们说了。这是一个无锁得方法。可能有多个线程同时执行到代码3处,因为临时变量是每线程的而tail是公共的。这样成功执行到代码3的线程都有自己当时的临时CLQ队列结构引用。为后面的判断做好准备。
3.开始判断 代码4 证明 在代码2 和代码4之间没有被其它线程修改过,因为有可能已经被修改了。那么这时进入新的轮询。
4.代码5 在看代码5之前我们先要明确一个概念就是把一个Node放入一个CLQ队列有两步操作。第一步是tail的next指向新的节点。第二步是tail指向新的节点。代码5 先判断是不是有线程已经在完成加入一个节点的第一步,如果是就帮助它完成第二步,再次进入循环。如果没有线程已经完成第一步。那就自己来完成插入节点的第一步,当然就是调用casNext比较更新的原子操作。上文已经讲过。再来完成插入元素的第二步,以上逻辑由代码6、代码7完成。注意看代码8
恒为真? 为什么?自己调用casTail如果成功返回真毫无疑问。如果失败为什么也返回真?答案很简单,这是因为如果失败说明一定有其它线程进入了代码9 帮自己完成了插入一个节点的第二步操作。所以自己操作肯定是失败的。所以也返回真。
从上面的代码分析可以看出打造一个无锁得并发容器处处都要十分小心。这也是CLQ的高明之处。
我们再来看看删除一个元素的代码:
- public E poll() {
- for (;;) {
- Node<E> h = head; //1
- Node<E> t = tail; //2
- Node<E> first = h.getNext(); //3
- if (h == head) { //4
- if (h == t) { //5
- if (first == null) //6
- return null; //7
- else
- casTail(t, first); //8
- } else if (casHead(h, first)) { //9
- E item = first.getItem(); //10
- if (item != null) { //11
- first.setItem(null); //12
- return item; //13
- }
- // else skip over deleted item, continue loop,
- }
- }
- }
- }
- public E poll() {
- for (;;) {
- Node<E> h = head; //1
- Node<E> t = tail; //2
- Node<E> first = h.getNext(); //3
- if (h == head) { //4
- if (h == t) { //5
- if (first == null) //6
- return null; //7
- else
- casTail(t, first); //8
- } else if (casHead(h, first)) { //9
- E item = first.getItem(); //10
- if (item != null) { //11
- first.setItem(null); //12
- return item; //13
- }
- // else skip over deleted item, continue loop,
- }
- }
- }
- }
1.同样是轮询,当h!=head的时候继续循环。因为在代码1和代码4之间已经有其它线程删除了头元素。从而造成h != head.
2.代码5 是否是空的CLQ。
3.如果是空的CLQ判断头得下一节点是否是null.因为只有时空的才说明没有元素。否则有可能其它线程正在插入元素造成first!=null,这时就帮助其它线程完成为指针更新操作。再继续轮询。
4.如果是非空的CLQ用casHead来原子更新头节点。因为删除一个CLQ的元素是从头开始删除的。如果失败说明有其它线程在删除元素。继续轮询。
5.代码10 如果第一个元素的内容为空说明有线程已经执行到代码12了。所以又开始轮询。
6.只有成功执行到代码13才正真是由当前线程完成了删除一个元素操作。CLQ的peek()操作和poll操作只差代码12的操作,即一个删除元素,一个不删除元素。
在CLQ中迭代器的方法也很精妙:
- private E advance() {
- lastRet = nextNode;
- E x = nextItem;
- Node<E> p = (nextNode == null)? first() : nextNode.getNext();
- for (;;) {
- if (p == null) {
- nextNode = null;
- nextItem = null;
- return x;
- }
- E item = p.getItem();
- if (item != null) {
- nextNode = p;
- nextItem = item;
- return x;
- } else // skip over nulls
- p = p.getNext();
- }
- }
- private E advance() {
- lastRet = nextNode;
- E x = nextItem;
- Node<E> p = (nextNode == null)? first() : nextNode.getNext();
- for (;;) {
- if (p == null) {
- nextNode = null;
- nextItem = null;
- return x;
- }
- E item = p.getItem();
- if (item != null) {
- nextNode = p;
- nextItem = item;
- return x;
- } else // skip over nulls
- p = p.getNext();
- }
- }
由于CLQ单向链表的特殊性,元素的变化只可能头处删除,在尾处添加。所以使用CLQ的迭代器时元素可能比实际的要多。原因很简单,当你在迭代的时候元素可能已经删除,当然这是你迭代的线程是不可见的。而删除是可见的。
ConcurrentLinkeQueue的其它操作大同小异。都是在不断的轮询中步步判断其它线程的影响,一步一步推进自己的操作逻辑。从而最终完成操作的。
Java并发包探秘 (一) ConcurrentLinkedQueue的更多相关文章
- Java并发包——Blockingqueue,ConcurrentLinkedQueue,Executors
背景 通过做以下一个小的接口系统gate,了解一下mina和java并发包里的东西.A系统为javaweb项目,B为C语言项目,gate是本篇须要完毕的系统. 需求 1. A为集群系统,并发较高,会批 ...
- Java并发包源码学习系列:基于CAS非阻塞并发队列ConcurrentLinkedQueue源码解析
目录 非阻塞并发队列ConcurrentLinkedQueue概述 结构组成 基本不变式 head的不变式与可变式 tail的不变式与可变式 offer操作 源码解析 图解offer操作 JDK1.6 ...
- java并发包&线程池原理分析&锁的深度化
java并发包&线程池原理分析&锁的深度化 并发包 同步容器类 Vector与ArrayList区别 1.ArrayList是最常用的List实现类,内部是通过数组实现的, ...
- Java并发包——线程安全的Collection相关类
Java并发包——线程安全的Collection相关类 摘要:本文主要学习了Java并发包下线程安全的Collection相关的类. 部分内容来自以下博客: https://www.cnblogs.c ...
- HashMap、Hashtable、ConcurrentHashMap、ConcurrentSkipListMap对比及java并发包(java.util.concurrent)
一.基础普及 接口(interface) 类(class) 继承类 实现的接口 Array √ Collection √ Set √ Collection List √ Collection Map ...
- java并发包提供的三种常用并发队列实现
java并发包中提供了三个常用的并发队列实现,分别是:ConcurrentLinkedQueue.LinkedBlockingQueue和ArrayBlockingQueue. ConcurrentL ...
- Java并发包源码学习系列:挂起与唤醒线程LockSupport工具类
目录 LockSupport概述 park与unpark相关方法 中断演示 blocker的作用 测试无blocker 测试带blocker JDK提供的demo 总结 参考阅读 系列传送门: Jav ...
- Java并发包源码学习系列:阻塞队列实现之LinkedTransferQueue源码解析
目录 LinkedTransferQueue概述 TransferQueue 类图结构及重要字段 Node节点 前置:xfer方法的定义 队列操作三大类 插入元素put.add.offer 获取元素t ...
- Java并发包源码学习系列:线程池ThreadPoolExecutor源码解析
目录 ThreadPoolExecutor概述 线程池解决的优点 线程池处理流程 创建线程池 重要常量及字段 线程池的五种状态及转换 ThreadPoolExecutor构造参数及参数意义 Work类 ...
随机推荐
- PHP类中的__get()和__set函数到底有什么用
PHP类中的__get()和__set函数到底有什么用 一.总结 一句话总结:当试图获取一个不可达变量时,类会自动调用__get.同样的,当试图设置一个不可达变量时,类会自动调用__set.在网站中, ...
- golang 部分理解:关于channel 和 goroutine 例子
部分理解:关于channel 和 goroutine 例子package main import "strconv" import "fmt" func mai ...
- golang 逐行读取文件
package main import ( "bufio" "fmt" "io" "os" ) func main() ...
- 洛谷 P3955 图书管理员【民间数据】
P3955 图书管理员[民间数据] 题目背景 数据已再次修正 (既然你们不要前导0我就去掉了) 题目描述 图书馆中每本书都有一个图书编码,可以用于快速检索图书,这个图书编码是一个 正整数. 每位借书的 ...
- 疯狂html5讲义(二):HTML5简的经常使用元素与属性(二):html5新增的通用属性
1.contentEditable属性 true时可直接编辑html元素里面的内容.且具有"可继承"的特点. 编辑后不要刷新页面.否则编辑的内容会丢失,能够通过该元素的innerH ...
- get_browser()用法
get_browser()用法 get_browser()函数是用来分析USER_AGENT的,它的执行方法是自动获取客户端的USER_AGENT,然后调用browscap.ini库进行分析得到结果 ...
- 1.16 Python基础知识 - 装饰器初识
Python中的装饰器就是函数,作用就是包装其他函数,为他们起到修饰作用.在不修改源代码的情况下,为这些函数额外添加一些功能,像日志记录,性能测试等.一个函数可以使用多个装饰器,产生的结果与装饰器的位 ...
- 【例题 7-4 UVA - 524】Prime Ring Problem
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 预处理出所有的答案. 打表输出. [代码] import java.util.ArrayList; import java.util ...
- 【习题 6-1 UVA-673】Parentheses Balance
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 括号匹配. 栈模拟就好. 多种括号也是一样可以做的. [代码] #include <bits/stdc++.h> usi ...
- 洛谷 P1143 进制转换
P1143 进制转换 题目描述 请你编一程序实现两种不同进制之间的数据转换. 输入输出格式 输入格式: 输入数据共有三行,第一行是一个正整数,表示需要转换的数的进制n(2≤n≤16),第二行是一个n进 ...