题目大意:

给定一个长度为\(n\)的序列\(a\),\(k\),和\(m\)次询问。

每次询问给定区间\([l,r]\),求满足\(l\leqslant i< j\leqslant r\)且\(\_\_ \text{builtin}\_ \text{popcount} (a_i\oplus a_j)=k\)的数对\((i,j)\)的个数。

40MB。

解题思路:

二次离线莫队lxl黑科技。

对于一次询问\([l,r]\),我们考虑右端点往右移动一格后变成\([l,r+1]\),多出来的数其实是\(a_{r+1}\)在\([l,r]\)内的贡献。

而这个贡献相当于\(a_{r+1}\)在\([1,r]\)内的贡献减去\(a_{r+1}\)在\([1,l-1]\)内的贡献。

而\(a_{i+1}\)在区间\([1,i]\)内的贡献可以前缀和预处理出来,这部分贡献可以\(O(1)\)计算。

而当右指针移动的时候,左指针不会动,所以\([1,l-1]\)这个区间是不会变的。

设指针\(r\)往右移动到\(r'\),则把\([r+1,r']\)塞进\(v_{l-1}\)里去,表示\([1,l-1]\)这段区间对\([r+1,r']\)有贡献。往左移动同理,记录一下贡献的正负即可。

左指针移动的话,则反着再记录一个即可。注意右指针移动的时候,左指针没有动过,而左指针移动的时候,右指针已经移动完了。

而莫队保证每个指针移动的总距离是\(O(n\sqrt n)\)的,也就是说一个vector里存的区间总长是\(O(n\sqrt n)\)的,那么拿出来暴力计算即可。

要用一个桶记录当前状态,可以做到\(O(\binom{14}{k})\)插入(插入一个数,把这个数异或所有合法数的桶都+1),\(O(1)\)查询。

注意最后得到的结果是与上一次的贡献差,最后要做一个前缀和。

时间复杂度\(O(n\binom{14}{k}+n\sqrt n)\),常数巨大。空间复杂度\(O(n+m)\)。

C++ Code:

#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
#include<cstring>
#define lim 16384
#define N 100005
#define reg register
class istream{
char buf[15000003],*s;
public:
inline istream(){
buf[fread(s=buf,1,15000001,stdin)]='\n';
}
template<typename T>
inline istream&operator>>(T&rhs){
for(rhs=0;!isdigit(*s);++s);
while(isdigit(*s))rhs=rhs*10+(*s++&15);
return*this;
}
}cin;
struct ostream{
char buf[8000005],*s;
inline ostream(){s=buf;}
inline void operator<<(long long d){
if(!d){
*s++='0';
}else{
static long long w;
for(w=1;w<=d;w*=10);
for(;w/=10;d%=w)*s++=d/w^'0';
}
*s++='\n';
}
inline ostream&operator<<(const char&c){*s++=c;return*this;}
inline~ostream(){fwrite(buf,1,s-buf,stdout);}
}cout;
int n,m,k,buc[lim+1],a[N],K[4000],KS;
long long ans[N],out[N],L_R[N],R_L[N];
struct que{
int l,r,id;
inline bool operator<(const que&rhs)const{
return((l/333!=rhs.l/333)?(l<rhs.l):(r<rhs.r));
}
}q[N];
struct node{
int l,r,id,op;
};
std::vector<node>L[N],R[N];
int main(){
cin>>n>>m>>k;
if(k>14){for(int i=1;i<=m;++i)puts("0");return 0;}
for(int i=0;i<lim;++i)
if(__builtin_popcount(i)==k)K[KS++]=i;
for(int i=1;i<=n;++i){
cin>>a[i];
L_R[i]=buc[a[i]]+L_R[i-1];
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
}
memset(buc,0,sizeof buc);
for(int i=n;i;--i){
R_L[i]=buc[a[i]]+R_L[i+1];
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
}
for(int i=1;i<=m;++i)cin>>q[i].l>>q[q[i].id=i].r;
std::sort(q+1,q+m+1);
q[0].l=1,q[0].r=0;
for(int i=1;i<=m;++i){
const que&now=q[i],pre=q[i-1];
ans[i]+=L_R[now.r]-L_R[pre.r]+R_L[now.l]-R_L[pre.l];
if(now.r>pre.r)
R[pre.l-1].push_back((node){pre.r+1,now.r,i,-1});else
if(now.r<pre.r)
R[pre.l-1].push_back((node){now.r+1,pre.r,i,1});
if(now.l<pre.l)
L[now.r+1].push_back((node){now.l,pre.l-1,i,-1});else
if(now.l>pre.l)
L[now.r+1].push_back((node){pre.l,now.l-1,i,1});
}
memset(buc,0,sizeof buc);
for(int i=1;i<=n;++i){
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
for(node j:R[i]){
const int l=j.l,r=j.r;
reg long long t=0,k=l;
for(;k+8<=r;k+=8)
t+=buc[a[k]],t+=buc[a[k+1]],t+=buc[a[k+2]],t+=buc[a[k+3]],
t+=buc[a[k+4]],t+=buc[a[k+5]],t+=buc[a[k+6]],t+=buc[a[k+7]];
for(;k<=r;++k)t+=buc[a[k]];
ans[j.id]+=t*j.op;
}
}
memset(buc,0,sizeof buc);
for(int i=n;i;--i){
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
for(node j:L[i]){
const int l=j.l,r=j.r;
reg long long t=0,k=l;
for(;k+8<=r;k+=8)
t+=buc[a[k]],t+=buc[a[k+1]],t+=buc[a[k+2]],t+=buc[a[k+3]],
t+=buc[a[k+4]],t+=buc[a[k+5]],t+=buc[a[k+6]],t+=buc[a[k+7]];
for(;k<=r;++k)t+=buc[a[k]];
ans[j.id]+=t*j.op;
}
}
for(int i=1;i<=m;++i)ans[i]+=ans[i-1],out[q[i].id]=ans[i];
for(int i=1;i<=m;++i)cout<<out[i];
return 0;
}

  

[洛谷P4887]第十四分块(前体)的更多相关文章

  1. 洛谷P4887 第十四分块(前体)(二次离线莫队)

    题面 传送门 题解 lxl大毒瘤 我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\ ...

  2. P4887 第十四分块(前体) 莫队

    题意: 给你一个序列,每次询问l,r问多少个a[i]^a[j]有k个1,k固定. 序列长度1e5,a[i]<=2^14 时限1s,空间40M 题解: 个人其实开始没什么思路,看了题解也好久,题解 ...

  3. 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)

    题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...

  4. Luogu4887 第十四分块(前体)

    sto \(lxl\) orz 考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数 询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1] ...

  5. 【LuoguP4887】第十四分块(前体)

    题目链接 题意 区间两数异或在二进制下有 \(k\) 个 \(1\) 的对数. Sol 普通莫队的话,如果要实时维护好区间内的答案需要支持区间对一个数求答案. 直接做不是很好做,容易发现其实这也就是一 ...

  6. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  7. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  8. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  9. 洛谷P4004 Hello world!(分块+并查集)

    传送门 虽然洛谷数据水,然而咱最终还是没有卡过uoj上的毒瘤数据-- 神tm全uoj就3个人过了这题-- 首先,每个数最多被开根\(6\)次,开到\(1\)之后就别管它了,把它用并查集连到它父亲上 它 ...

随机推荐

  1. REST当道,NO MVC

    前世今生 B/S开发经历了几个时代,如今已经是后MVC时期了. MVC体现了分层和解耦合的概念.从功能和理念上都做出过巨大贡献,使Java B/S开发在面对大型项目时从容不迫,说成是上个十年Java ...

  2. Windows10 显示库、隐藏6个目录、隐藏OneDrive

    Win10的资源管理器与之前的版本号最大的不同就是默认隐藏了库,又在此电脑中显示了6个用户目录. 但因为习惯了使用库进行文件的管理,这一改变有些令人不习惯. 以下就让我来教大家怎样显示库.以及隐藏这6 ...

  3. Codeforces Round #313 (Div. 2)(A,B,C,D)

    A题: 题目地址:Currency System in Geraldion 题意:给出n中货币的面值(每种货币有无数张),要求不能表示出的货币的最小值.若全部面值的都能表示,输出-1. 思路:水题,就 ...

  4. solaris&nbsp;10&nbsp;关闭ftp、telnet

    安装solaris10,启动后发现找不到ftp.telnet的关闭方法, 管理命令 svcadm(服务状态管理,启动.停止等) # svcs 查看当前所有的服务状态,可以使用|管道符重定向作更个性化的 ...

  5. Visual Studio写Cuda代码

    1. 正常新建一个项目   2. 在项目中右键, build 选项中选择 CUDA 编译器   3. 项目属性中设置 CUDA 链接库 和 头文件 编译参数等   4. 完成     cu cuh 文 ...

  6. 虚基类——(1)定义人员类Person: 公有成员:姓名(Name); 保护成员:性别(Gender),年龄(Age); 构造函数和析构函数

    题目描述: (1)定义人员类Person: 公有成员:姓名(Name): 保护成员:性别(Gender),年龄(Age): 构造函数和析构函数 (2) 从人员类Person派生学生记录类Student ...

  7. python-sqlite3事务

    sqlite3事务总结: 在connect()中不传入 isolation_level 事务处理: 使用connection.commit() #!/usr/bin/env python # -*- ...

  8. C#操作Mysql类

    using System;using System.Collections.Generic;using System.Text;using System.Data;using System.Text. ...

  9. Solr.NET快速入门(五)【聚合统计,分组查询】

    聚合统计 属性 说明 Min 最小值 Max 最大值 Sum 总和 Count 记录数,也就是多少行记录 Missing 结果集中,有多少条记录是空值 SumOfSquares 平方和(x1^2 + ...

  10. Solr快速入门(一)

    概述 本文档介绍了如何获取和运行Solr,将各种数据源收集到多个集合中,以及了解Solr管理和搜索界面. 首先解压缩Solr版本并将工作目录更改为安装Solr的子目录.请注意,基本目录名称可能随Sol ...