[洛谷P4887]第十四分块(前体)
题目大意:
给定一个长度为\(n\)的序列\(a\),\(k\),和\(m\)次询问。
每次询问给定区间\([l,r]\),求满足\(l\leqslant i< j\leqslant r\)且\(\_\_ \text{builtin}\_ \text{popcount} (a_i\oplus a_j)=k\)的数对\((i,j)\)的个数。
40MB。
解题思路:
二次离线莫队lxl黑科技。
对于一次询问\([l,r]\),我们考虑右端点往右移动一格后变成\([l,r+1]\),多出来的数其实是\(a_{r+1}\)在\([l,r]\)内的贡献。
而这个贡献相当于\(a_{r+1}\)在\([1,r]\)内的贡献减去\(a_{r+1}\)在\([1,l-1]\)内的贡献。
而\(a_{i+1}\)在区间\([1,i]\)内的贡献可以前缀和预处理出来,这部分贡献可以\(O(1)\)计算。
而当右指针移动的时候,左指针不会动,所以\([1,l-1]\)这个区间是不会变的。
设指针\(r\)往右移动到\(r'\),则把\([r+1,r']\)塞进\(v_{l-1}\)里去,表示\([1,l-1]\)这段区间对\([r+1,r']\)有贡献。往左移动同理,记录一下贡献的正负即可。
左指针移动的话,则反着再记录一个即可。注意右指针移动的时候,左指针没有动过,而左指针移动的时候,右指针已经移动完了。
而莫队保证每个指针移动的总距离是\(O(n\sqrt n)\)的,也就是说一个vector里存的区间总长是\(O(n\sqrt n)\)的,那么拿出来暴力计算即可。
要用一个桶记录当前状态,可以做到\(O(\binom{14}{k})\)插入(插入一个数,把这个数异或所有合法数的桶都+1),\(O(1)\)查询。
注意最后得到的结果是与上一次的贡献差,最后要做一个前缀和。
时间复杂度\(O(n\binom{14}{k}+n\sqrt n)\),常数巨大。空间复杂度\(O(n+m)\)。
C++ Code:
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
#include<cstring>
#define lim 16384
#define N 100005
#define reg register
class istream{
char buf[15000003],*s;
public:
inline istream(){
buf[fread(s=buf,1,15000001,stdin)]='\n';
}
template<typename T>
inline istream&operator>>(T&rhs){
for(rhs=0;!isdigit(*s);++s);
while(isdigit(*s))rhs=rhs*10+(*s++&15);
return*this;
}
}cin;
struct ostream{
char buf[8000005],*s;
inline ostream(){s=buf;}
inline void operator<<(long long d){
if(!d){
*s++='0';
}else{
static long long w;
for(w=1;w<=d;w*=10);
for(;w/=10;d%=w)*s++=d/w^'0';
}
*s++='\n';
}
inline ostream&operator<<(const char&c){*s++=c;return*this;}
inline~ostream(){fwrite(buf,1,s-buf,stdout);}
}cout;
int n,m,k,buc[lim+1],a[N],K[4000],KS;
long long ans[N],out[N],L_R[N],R_L[N];
struct que{
int l,r,id;
inline bool operator<(const que&rhs)const{
return((l/333!=rhs.l/333)?(l<rhs.l):(r<rhs.r));
}
}q[N];
struct node{
int l,r,id,op;
};
std::vector<node>L[N],R[N];
int main(){
cin>>n>>m>>k;
if(k>14){for(int i=1;i<=m;++i)puts("0");return 0;}
for(int i=0;i<lim;++i)
if(__builtin_popcount(i)==k)K[KS++]=i;
for(int i=1;i<=n;++i){
cin>>a[i];
L_R[i]=buc[a[i]]+L_R[i-1];
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
}
memset(buc,0,sizeof buc);
for(int i=n;i;--i){
R_L[i]=buc[a[i]]+R_L[i+1];
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
}
for(int i=1;i<=m;++i)cin>>q[i].l>>q[q[i].id=i].r;
std::sort(q+1,q+m+1);
q[0].l=1,q[0].r=0;
for(int i=1;i<=m;++i){
const que&now=q[i],pre=q[i-1];
ans[i]+=L_R[now.r]-L_R[pre.r]+R_L[now.l]-R_L[pre.l];
if(now.r>pre.r)
R[pre.l-1].push_back((node){pre.r+1,now.r,i,-1});else
if(now.r<pre.r)
R[pre.l-1].push_back((node){now.r+1,pre.r,i,1});
if(now.l<pre.l)
L[now.r+1].push_back((node){now.l,pre.l-1,i,-1});else
if(now.l>pre.l)
L[now.r+1].push_back((node){pre.l,now.l-1,i,1});
}
memset(buc,0,sizeof buc);
for(int i=1;i<=n;++i){
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
for(node j:R[i]){
const int l=j.l,r=j.r;
reg long long t=0,k=l;
for(;k+8<=r;k+=8)
t+=buc[a[k]],t+=buc[a[k+1]],t+=buc[a[k+2]],t+=buc[a[k+3]],
t+=buc[a[k+4]],t+=buc[a[k+5]],t+=buc[a[k+6]],t+=buc[a[k+7]];
for(;k<=r;++k)t+=buc[a[k]];
ans[j.id]+=t*j.op;
}
}
memset(buc,0,sizeof buc);
for(int i=n;i;--i){
reg int j=0;
for(;j+8<KS;j+=8)
++buc[a[i]^K[j]],++buc[a[i]^K[j+1]],++buc[a[i]^K[j+2]],++buc[a[i]^K[j+3]],
++buc[a[i]^K[j+4]],++buc[a[i]^K[j+5]],++buc[a[i]^K[j+6]],++buc[a[i]^K[j+7]];
for(;j<KS;++j)++buc[a[i]^K[j]];
for(node j:L[i]){
const int l=j.l,r=j.r;
reg long long t=0,k=l;
for(;k+8<=r;k+=8)
t+=buc[a[k]],t+=buc[a[k+1]],t+=buc[a[k+2]],t+=buc[a[k+3]],
t+=buc[a[k+4]],t+=buc[a[k+5]],t+=buc[a[k+6]],t+=buc[a[k+7]];
for(;k<=r;++k)t+=buc[a[k]];
ans[j.id]+=t*j.op;
}
}
for(int i=1;i<=m;++i)ans[i]+=ans[i-1],out[q[i].id]=ans[i];
for(int i=1;i<=m;++i)cout<<out[i];
return 0;
}
[洛谷P4887]第十四分块(前体)的更多相关文章
- 洛谷P4887 第十四分块(前体)(二次离线莫队)
题面 传送门 题解 lxl大毒瘤 我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\ ...
- P4887 第十四分块(前体) 莫队
题意: 给你一个序列,每次询问l,r问多少个a[i]^a[j]有k个1,k固定. 序列长度1e5,a[i]<=2^14 时限1s,空间40M 题解: 个人其实开始没什么思路,看了题解也好久,题解 ...
- 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)
题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...
- Luogu4887 第十四分块(前体)
sto \(lxl\) orz 考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数 询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1] ...
- 【LuoguP4887】第十四分块(前体)
题目链接 题意 区间两数异或在二进制下有 \(k\) 个 \(1\) 的对数. Sol 普通莫队的话,如果要实时维护好区间内的答案需要支持区间对一个数求答案. 直接做不是很好做,容易发现其实这也就是一 ...
- 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)
莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...
- 洛谷P3935 Calculating(整除分块)
题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...
- 洛谷P3396 哈希冲突 (分块)
洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...
- 洛谷P4004 Hello world!(分块+并查集)
传送门 虽然洛谷数据水,然而咱最终还是没有卡过uoj上的毒瘤数据-- 神tm全uoj就3个人过了这题-- 首先,每个数最多被开根\(6\)次,开到\(1\)之后就别管它了,把它用并查集连到它父亲上 它 ...
随机推荐
- [bzoj4196][Noi2015]软件包管理器_树链剖分_线段树
软件包管理器 bzoj-4196 Noi-2015 题目大意:Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件 ...
- rabbitmq安装、集群搭建
rabbitmq的安装: CentOS上面部署: 首先修改hosts文件 修改hosts文件vi /etc/hosts1.1.1.1 hostname 2.2.2.2 hostname 3.3.3.3 ...
- 配置db账号和密码时一定注意空格问题、空行问题否则连接报错
#postgresql dbpg.datasource.type=com.alibaba.druid.pool.DruidDataSourcepg.datasource.driverClassName ...
- [DLX精确覆盖] hdu 3663 Power Stations
题意: 给你n.m.d,代表有n个城市.m条城市之间的关系,每一个城市要在日后d天内都有电. 对于每一个城市,都有一个发电站,每一个发电站能够在[a,b]的每一个连续子区间内发电. x城市发电了.他相 ...
- 一次获取多个oracle序列值
一次获取多个oracle序列值 学习了:http://blog.csdn.net/wangchsh2008/article/details/53495961 select seq_one.nextva ...
- BZOJ 3037 创世纪 树形DP
题目大意:给定一张有向图,每一个点有且仅有一条出边,要求若一个点x扔下去,至少存在一个保留的点y,y的出边指向x,求最多扔下去多少个点 首先原题的意思就是支配关系 我们反向考虑 求最少保留的点 要求一 ...
- NS3网络仿真(3): NetAnim
快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 在NS3提供的演示样例first.py中,并没有生成NetAnim所须要的xml文件,本节我们尝试 ...
- Swift - 获取当前时间的时间戳(时间戳与时间互相转换)
(本文代码已升级至Swift3) 1,时间戳 时间戳是指格林威治时间1970年01月01日00时00分00秒(北京时间1970年01月01日08时00分00秒)起至现在的总秒数. 2,获取当前时间的时 ...
- 写个js 分页玩玩(原创)
<ul id="page"> <li class="pagetest">1</li> <li class=" ...
- [Hacker] 端口大全
一 .端口大全 端口:0 服务:Reserved 说明:通常用于分析操作系统.这一方法能够工作是因为在一些系统中“0”是无效端口,当你试图使用通常的闭合端口连接它时将产生不同的结果.一种典型的扫描,使 ...