BZOJ 3727 DP?推式子..
思路:
设$sum[i]表示i的子树中a[i]的和$
$b[1]=\Sigma a[i]*dis[i] = \Sigma _{i=2} ^n sum[i]$
$b[x]-b[fa[x]]=sum[1]-2*sum[x]$
$sum[1]={\Sigma_{i=2}^n (b[x]-b[fa[x]])+2*b[1] \over n-1}$
$求出sum[1]以后根据a[x]=sum[x]-\Sigma_{v是x的儿子} sum[v]带入求出其它值即可$
$复杂度O(n)$
//By SiriusRen
#include <cstdio>
#include <cstring>
using namespace std;
#define int long long
const int N=;
int n,xx,yy,first[N],next[N],v[N],tot,fa[N],rev[N],cnt,b[N],X;
long long sum[N],ans[N];
void add(int x,int y){v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void dfs(int x){
rev[++cnt]=x;
for(int i=first[x];~i;i=next[i])if(v[i]!=fa[x])
fa[v[i]]=x,dfs(v[i]);
}
void dfs2(int x){
ans[x]=sum[x];
for(int i=first[x];~i;i=next[i])if(v[i]!=fa[x])
dfs2(v[i]),ans[x]-=sum[v[i]];
}
signed main(){
memset(first,-,sizeof(first));
scanf("%lld",&n);
for(int i=;i<n;i++)scanf("%lld%lld",&xx,&yy),add(xx,yy),add(yy,xx);
for(int i=;i<=n;i++)scanf("%lld",&b[i]);
dfs();
for(int i=;i<=n;i++)sum[]+=(b[i]-b[fa[i]]);
sum[]=(sum[]+*b[])/(n-);
for(int i=;i<=n;i++)X=rev[i],sum[X]=(sum[]-b[X]+b[fa[X]])/;
dfs2();
for(int i=;i<=n;i++)printf("%lld%c",ans[i],i!=n?' ':'\n');
}
BZOJ 3727 DP?推式子..的更多相关文章
- [HAOI2007]分割矩阵 DP+推式子
发现最近好少写博客啊(其实是各种摆去了) 更一点吧 这道题要求最小化均方差,其实凭直觉来说就是要使每个块分的比较均匀一点,但是单单想到想到这些还是不够的, 首先f[i][j][k][l][t]表示以( ...
- Codeforces 288E - Polo the Penguin and Lucky Numbers(数位 dp+推式子)
题目传送门 似乎我的解法和官方题解不太一样 纪念自己独立做出来的一道难度 2800 的题. 我们记 \(ans(x)\) 为 \([444...44,x]\) 的答案,显然答案为 \(ans(r)-a ...
- HZOJ 20190727 T2 单(树上dp+乱搞?+乱推式子?+dfs?)
考试T2,考试时想到了40pts解法,即对于求b数组,随便瞎搞一下就oxxk,求a的话,很明显的高斯消元,但考试时不会打+没开double挂成10pts(我真sb),感觉考试策略还是不够成熟,而且感觉 ...
- LOJ 3399 -「2020-2021 集训队作业」Communication Network(推式子+组合意义+树形 DP)
题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \( ...
- bzoj 3157 && bzoj 3516 国王奇遇记——推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...
- bzoj 3157 & bzoj 3516 国王奇遇记 —— 推式子
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.p ...
- BZOJ 3453 - tyvj 1858 XLkxc(插值+推式子)
题面传送门 首先根据我们刚学插值时学的理论知识,\(f(i)\) 是关于 \(i\) 的 \(k+1\) 次多项式.而 \(g(x)\) 是 \(f(x)\) 的前缀和,根据有限微积分那一套理论,\( ...
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- sequence——强行推式子+组合意义
sequence 考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里 n平方的做法可以直接DP, 感觉有式子可言, 就推出式子:类似coat,每个长度为i的计算i次. ...
随机推荐
- Spring MVC起步(一)
下图展示了请求使用Spring MVC所经历的所有站点. 在请求离开浏览器时1,会带有用户请求内容的信息,至少会包含请求的URL.但是还可能包含其他的信息,如用户提交的表单. DispatcherSe ...
- Miller Rabbin素数测试
步骤 ①先写快速幂取模函数 ②MR算法开始 (1)传入两个参数一个是底数一个是n也就是幂数,如果n是一个合数那么可以判定,这个数一定不是素数 (2)然后开始寻找一个奇数的n去计算,如果最后满足a^d% ...
- uva 1587(Box UVA - 1587)
题目大意是给定6个数对,每个数对代表一个面的长和宽,判断这6个面是否能构成一个长方体. 这种题一看很复杂,但是只要不想多了实际上这就是一个水题... 首先说明一下判断的思路: 1.长方体是有三个对面的 ...
- os、sys模块
os模块 os模块是与操作系统交互的一个接口 os.makedirs("dirname1/dirname2") # 可生成多层递归目录 os.removedirs("di ...
- 使用vscode,新建.vue文件,tab自动生成vue代码模板
第一步: 新建模板并保存 文件 --> 首选项 --> 用户代码片段 --> 输入vue,选择vue.json -->复制 第三步中的模板内容中内容保存 第二步: 添加配置,让 ...
- Dijkstra算法求最短路径
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h&g ...
- Huawei-R&S-网络工程师实验笔记20190527-华为设备密码重置、设置web管理
>Huawei-R&S-网络工程师实验笔记20190527-华为设备密码重置.设置web管理 >>实验开始(使用SecureCRT 等工具软件): 一.华为设备密码重置,通过 ...
- 【codeforces 515C】Drazil and Factorial
[题目链接]:http://codeforces.com/contest/515/problem/C [题意] 定义f(n)=n这个数各个位置上的数的阶乘的乘积; 给你a; 让你另外求一个不含0和1的 ...
- js for循环中的var与let
var a = []; for (var i = 0; i < 10; i++) { a[i] = function () { console.log(i); }; } a[6](); 上面代码 ...
- hdu_2046_骨牌铺方格_201311251403
骨牌铺方格 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Subm ...