http://acm.hdu.edu.cn/showproblem.php?pid=3698

Let the light guide us

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 62768/32768 K (Java/Others)

Total Submission(s): 821    Accepted Submission(s): 285

Problem Description
Plain of despair was once an ancient battlefield where those brave spirits had rested in peace for thousands of years. Actually no one dare step into this sacred land until the rumor that “there is a huge gold mine underneath the plain” started to spread. 



Recently an accident destroyed the eternal tranquility. Some greedy fools tried using powerful bombs to find the hidden treasure. Of course they failed and such behavior enraged those spirits--the consequence is that all the human villages nearby are haunted
by ghosts.



In order to stop those ghosts as soon as possible, Panda the Archmage and Facer the great architect figure out a nice plan. Since the plain can be represented as grids of N rows and M columns, the plan is that we choose ONLY ONE cell in EACH ROW to build a
magic tower so that each tower can use holy light to protect the entire ROW, and finally the whole plain can be covered and all spirits can rest in peace again. It will cost different time to build up a magic tower in different cells. The target is to minimize
the total time of building all N towers, one in each row.



“Ah, we might have some difficulties.” said Panda, “In order to control the towers correctly, we must guarantee that every two towers in two consecutive rows share a common magic area.”



“What?”



“Specifically, if we build a tower in cell (i,j) and another tower in cell (i+1,k), then we shall have |j-k|≤f(i,j)+f(i+1,k). Here, f(i,j) means the scale of magic flow in cell (i,j).”



“How?”



“Ur, I forgot that you cannot sense the magic power. Here is a map which shows the scale of magic flows in each cell. And remember that the constraint holds for every two consecutive rows.”



“Understood.”



“Excellent! Let’s get started!”



Would you mind helping them?
 
Input
There are multiple test cases. 



Each test case starts with a line containing 2 integers N and M (2<=N<=100,1<=M<=5000), representing that the plain consists N rows and M columns.



The following N lines contain M integers each, forming a matrix T of N×M. The j-th element in row i (Tij) represents the time cost of building a magic tower in cell (i, j). (0<=Tij<=100000)



The following N lines contain M integers each, forming a matrix F of N×M. The j-th element in row i (Fij) represents the scale of magic flows in cell (i, j). (0<=Fij<=100000)



For each test case, there is always a solution satisfying the constraints.



The input ends with a test case of N=0 and M=0.
 
Output
For each test case, output a line with a single integer, which is the minimum time cost to finish all magic towers.
 
Sample Input
3 5
9 5 3 8 7
8 2 6 8 9
1 9 7 8 6
0 1 0 1 2
1 0 2 1 1
0 2 1 0 2
0 0
 
Sample Output
10
 
Source

题意:就是每行选一个,上下两行需满足|j-k|≤f(i,j)+f(i+1,k).,问最小的cell和值。

分析:明显的dp,dp[i][j]表示到第i行选第j个的值,可是这样转移复杂度须要n*m*m,肯定会超时。

我们注意到|j-k|<=f(i,j)+f(i-1,k),那么对于i-1行的第k个我们更新[k-f(i-1,k),k+f(i-1,k)],对于第i行查询[j-f(i,j),j+f(i,j)],这样刚好满足的是要求的条件。

所以就用线段树维护一下查询区间最小值更新区间值就好。这样复杂度就是n*m*log(m)。。

/**
* @author neko01
*/
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
#define min3(a,b,c) min(a,min(b,c))
#define max3(a,b,c) max(a,max(b,c))
#define pb push_back
#define mp(a,b) make_pair(a,b)
#define clr(a) memset(a,0,sizeof a)
#define clr1(a) memset(a,-1,sizeof a)
#define dbg(a) printf("%d\n",a)
typedef pair<int,int> pp;
const double eps=1e-8;
const double pi=acos(-1.0);
const int INF=0x7fffffff;
const LL inf=(((LL)1)<<61)+5;
const int N=105;
const int M=5005;
int a[N][M];
int f[N][M];
int dp[N][M];
struct node{
int l,r;
int Min;
int col;
}tree[M*4];
void build(int x,int l,int r)
{
tree[x].l=l,tree[x].r=r;
tree[x].Min=INF;
tree[x].col=INF;
if(l==r) return;
int mid=(l+r)>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
}
inline void push_down(int x)
{
if(tree[x].col!=INF)
{
tree[x<<1].col=min(tree[x].col,tree[x<<1].col);
tree[x<<1|1].col=min(tree[x<<1|1].col,tree[x].col);
tree[x<<1].Min=min(tree[x].col,tree[x<<1].Min);
tree[x<<1|1].Min=min(tree[x].col,tree[x<<1|1].Min);
tree[x].col=INF;
}
}
void update(int x,int l,int r,int val)
{
if(tree[x].l==l&&tree[x].r==r)
{
tree[x].Min=min(tree[x].Min,val);
tree[x].col=min(tree[x].col,val);
return;
}
push_down(x);
int mid=(tree[x].l+tree[x].r)>>1;
if(r<=mid) update(x<<1,l,r,val);
else if(l>mid) update(x<<1|1,l,r,val);
else
{
update(x<<1,l,mid,val);
update(x<<1|1,mid+1,r,val);
}
tree[x].Min=min(tree[x<<1].Min,tree[x<<1|1].Min);
}
int query(int x,int l,int r)
{
if(tree[x].l==l&&tree[x].r==r)
return tree[x].Min;
push_down(x);
int mid=(tree[x].l+tree[x].r)>>1;
if(r<=mid) return query(x<<1,l,r);
else if(l>mid) return query(x<<1|1,l,r);
else return min(query(x<<1,l,mid),query(x<<1|1,mid+1,r));
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0) break;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
if(i==1) dp[1][j]=a[i][j];
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&f[i][j]);
for(int i=2;i<=n;i++)
{
build(1,1,m);
for(int j=1;j<=m;j++)
{
int l=max(1,j-f[i-1][j]);
int r=min(m,j+f[i-1][j]);
update(1,l,r,dp[i-1][j]);
}
for(int j=1;j<=m;j++)
{
int l=max(1,j-f[i][j]);
int r=min(m,j+f[i][j]);
dp[i][j]=query(1,l,r)+a[i][j];
}
}
int ans=INF;
for(int i=1;i<=m;i++)
ans=min(ans,dp[n][i]);
printf("%d\n",ans);
}
return 0;
}

hdu3698 Let the light guide us dp+线段树优化的更多相关文章

  1. 题解 HDU 3698 Let the light guide us Dp + 线段树优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...

  2. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  3. HDU4719-Oh My Holy FFF(DP线段树优化)

    Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) T ...

  4. UVA-1322 Minimizing Maximizer (DP+线段树优化)

    题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...

  5. zoj 3349 dp + 线段树优化

    题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...

  6. 完美字符子串 单调队列预处理+DP线段树优化

    题意:有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数.如果你的子串是最长的,那 ...

  7. 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机

    这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...

  8. Contest20140906 ProblemA dp+线段树优化

    Problem A 内存限制 256MB 时间限制 5S 程序文件名 A.pas/A.c/A.cpp 输入文件 A.in 输出文件 A.out 你有一片荒地,为了方便讨论,我们将这片荒地看成一条直线, ...

  9. POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4721   Accepted: 1593 D ...

随机推荐

  1. ZJOI2002昂贵的聘礼题解

    http://codevs.cn/problem/1324/ 题目大意 一个部落,你能够和社会地位等级的极差不大于M的全部人交易.你能够拿金币直接从一个人手里买东西,也能够从别人那里买到那个人想要的东 ...

  2. apper

    查漏补缺系列之dapper初体验   什么是dapper 在维护一些较老的项目的时候,往往我们会用很多sql那么这个时候我们要考虑优化这些项目的时候,我们就可以使用dapper dapper 是一款轻 ...

  3. jQuery笔记---选择器(二)

    1.选择器练习: 1)查找UL中的元素的内容 格式:$(“ul li:XX”).text() XX:代表方法 比如:获取到第一元素,然后获取当中的值 $(“ul li:first”).text() 获 ...

  4. AdminLTE的使用(转)

    官方文档link1.AdminLTE的必要配置文件<!-- Tell the browser to be responsive to screen width --> <meta c ...

  5. GDB如何调试没有符号表(未加-g选项的编译)的程序

    /********************************************************************* * Author  : Samson * Date    ...

  6. mysql 5.7 innodb count count(*) count(1) 大数据 查询慢 耗时多 优化

    原文:mysql 5.7 innodb count count(*) count(1) 大数据 查询慢 耗时多 优化 问题描述 mysql 5.7 innodb 引擎 使用以下几种方法进行统计效率差不 ...

  7. 通过双重for循环来找到JSON中不反复的数据

    //通过双重for循环来找到JSON中不反复的数据 var count = 0; for ( i=0; i<json.length; i++) { for ( j=0; j<i; j++) ...

  8. [PostgreSQL] Use Foreign Keys to Ensure Data Integrity in Postgres

    Every movie needs a director and every rented movie needs to exist in the store. How do we make sure ...

  9. Velocity浅析及与Jsp、Freemarker对比 分类: B1_JAVA 2014-07-21 09:14 637人阅读 评论(0) 收藏

    转载自:http://www.cnblogs.com/petermsdn/archive/2011/05/06/2039178.html Velocity 是一个基于java 的模板引擎(templa ...

  10. Berkeley DB基础教程 分类: H3_NUTCH 2014-05-29 15:21 2212人阅读 评论(0) 收藏

    一.Berkeley DB的介绍 (1)Berkeley DB是一个嵌入式数据库,它适合于管理海量的.简单的数据.如Google使用其来保存账户信息,Heritrix用其来保存froniter. (2 ...