hdu3698 Let the light guide us dp+线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698
Let the light guide us
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 62768/32768 K (Java/Others)
Total Submission(s): 821 Accepted Submission(s): 285
Recently an accident destroyed the eternal tranquility. Some greedy fools tried using powerful bombs to find the hidden treasure. Of course they failed and such behavior enraged those spirits--the consequence is that all the human villages nearby are haunted
by ghosts.
In order to stop those ghosts as soon as possible, Panda the Archmage and Facer the great architect figure out a nice plan. Since the plain can be represented as grids of N rows and M columns, the plan is that we choose ONLY ONE cell in EACH ROW to build a
magic tower so that each tower can use holy light to protect the entire ROW, and finally the whole plain can be covered and all spirits can rest in peace again. It will cost different time to build up a magic tower in different cells. The target is to minimize
the total time of building all N towers, one in each row.
“Ah, we might have some difficulties.” said Panda, “In order to control the towers correctly, we must guarantee that every two towers in two consecutive rows share a common magic area.”
“What?”
“Specifically, if we build a tower in cell (i,j) and another tower in cell (i+1,k), then we shall have |j-k|≤f(i,j)+f(i+1,k). Here, f(i,j) means the scale of magic flow in cell (i,j).”
“How?”
“Ur, I forgot that you cannot sense the magic power. Here is a map which shows the scale of magic flows in each cell. And remember that the constraint holds for every two consecutive rows.”
“Understood.”
“Excellent! Let’s get started!”
Would you mind helping them?
Each test case starts with a line containing 2 integers N and M (2<=N<=100,1<=M<=5000), representing that the plain consists N rows and M columns.
The following N lines contain M integers each, forming a matrix T of N×M. The j-th element in row i (Tij) represents the time cost of building a magic tower in cell (i, j). (0<=Tij<=100000)
The following N lines contain M integers each, forming a matrix F of N×M. The j-th element in row i (Fij) represents the scale of magic flows in cell (i, j). (0<=Fij<=100000)
For each test case, there is always a solution satisfying the constraints.
The input ends with a test case of N=0 and M=0.
3 5
9 5 3 8 7
8 2 6 8 9
1 9 7 8 6
0 1 0 1 2
1 0 2 1 1
0 2 1 0 2
0 0
10
题意:就是每行选一个,上下两行需满足|j-k|≤f(i,j)+f(i+1,k).,问最小的cell和值。
分析:明显的dp,dp[i][j]表示到第i行选第j个的值,可是这样转移复杂度须要n*m*m,肯定会超时。
我们注意到|j-k|<=f(i,j)+f(i-1,k),那么对于i-1行的第k个我们更新[k-f(i-1,k),k+f(i-1,k)],对于第i行查询[j-f(i,j),j+f(i,j)],这样刚好满足的是要求的条件。
所以就用线段树维护一下查询区间最小值更新区间值就好。这样复杂度就是n*m*log(m)。。
/**
* @author neko01
*/
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
#define min3(a,b,c) min(a,min(b,c))
#define max3(a,b,c) max(a,max(b,c))
#define pb push_back
#define mp(a,b) make_pair(a,b)
#define clr(a) memset(a,0,sizeof a)
#define clr1(a) memset(a,-1,sizeof a)
#define dbg(a) printf("%d\n",a)
typedef pair<int,int> pp;
const double eps=1e-8;
const double pi=acos(-1.0);
const int INF=0x7fffffff;
const LL inf=(((LL)1)<<61)+5;
const int N=105;
const int M=5005;
int a[N][M];
int f[N][M];
int dp[N][M];
struct node{
int l,r;
int Min;
int col;
}tree[M*4];
void build(int x,int l,int r)
{
tree[x].l=l,tree[x].r=r;
tree[x].Min=INF;
tree[x].col=INF;
if(l==r) return;
int mid=(l+r)>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
}
inline void push_down(int x)
{
if(tree[x].col!=INF)
{
tree[x<<1].col=min(tree[x].col,tree[x<<1].col);
tree[x<<1|1].col=min(tree[x<<1|1].col,tree[x].col);
tree[x<<1].Min=min(tree[x].col,tree[x<<1].Min);
tree[x<<1|1].Min=min(tree[x].col,tree[x<<1|1].Min);
tree[x].col=INF;
}
}
void update(int x,int l,int r,int val)
{
if(tree[x].l==l&&tree[x].r==r)
{
tree[x].Min=min(tree[x].Min,val);
tree[x].col=min(tree[x].col,val);
return;
}
push_down(x);
int mid=(tree[x].l+tree[x].r)>>1;
if(r<=mid) update(x<<1,l,r,val);
else if(l>mid) update(x<<1|1,l,r,val);
else
{
update(x<<1,l,mid,val);
update(x<<1|1,mid+1,r,val);
}
tree[x].Min=min(tree[x<<1].Min,tree[x<<1|1].Min);
}
int query(int x,int l,int r)
{
if(tree[x].l==l&&tree[x].r==r)
return tree[x].Min;
push_down(x);
int mid=(tree[x].l+tree[x].r)>>1;
if(r<=mid) return query(x<<1,l,r);
else if(l>mid) return query(x<<1|1,l,r);
else return min(query(x<<1,l,mid),query(x<<1|1,mid+1,r));
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
if(n==0&&m==0) break;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
if(i==1) dp[1][j]=a[i][j];
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&f[i][j]);
for(int i=2;i<=n;i++)
{
build(1,1,m);
for(int j=1;j<=m;j++)
{
int l=max(1,j-f[i-1][j]);
int r=min(m,j+f[i-1][j]);
update(1,l,r,dp[i-1][j]);
}
for(int j=1;j<=m;j++)
{
int l=max(1,j-f[i][j]);
int r=min(m,j+f[i][j]);
dp[i][j]=query(1,l,r)+a[i][j];
}
}
int ans=INF;
for(int i=1;i<=m;i++)
ans=min(ans,dp[n][i]);
printf("%d\n",ans);
}
return 0;
}
hdu3698 Let the light guide us dp+线段树优化的更多相关文章
- 题解 HDU 3698 Let the light guide us Dp + 线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- HDU4719-Oh My Holy FFF(DP线段树优化)
Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) T ...
- UVA-1322 Minimizing Maximizer (DP+线段树优化)
题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...
- zoj 3349 dp + 线段树优化
题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...
- 完美字符子串 单调队列预处理+DP线段树优化
题意:有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数.如果你的子串是最长的,那 ...
- 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机
这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...
- Contest20140906 ProblemA dp+线段树优化
Problem A 内存限制 256MB 时间限制 5S 程序文件名 A.pas/A.c/A.cpp 输入文件 A.in 输出文件 A.out 你有一片荒地,为了方便讨论,我们将这片荒地看成一条直线, ...
- POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4721 Accepted: 1593 D ...
随机推荐
- [转]MySQLHelper类
本文转自:http://de.cel.blog.163.com/blog/static/5145123620110181003903/ 类似于SQLHelper,只是这里引用的是MySql.Data类 ...
- oracle高效分页存储过程(百万数据级)
create or replace procedure Pager( page in number,--数据页数,从1开始 pageSize in number,--每页大小 tableName nv ...
- 怎样cp文件夹时忽略指定的文件夹和文件
在备份ltedecoder程序时,须要把此文件夹拷由到bak文件夹下.但decoder文件夹下有个大文件,不须要备份,还有日志问题,也不须要备份,怎样实现呢?? 方法: cd /source-dir ...
- storm原理介绍
目录 storm原理介绍 一.原理介绍 二.配置 三.并行度 (一)storm拓扑的并行度可以从以下4个维度进行设置: (二)并行度的设置方法 (三)示例 四.分组 五.可靠性 (一)spout (二 ...
- spark提交应用的方法(spark-submit)
参考自:https://spark.apache.org/docs/latest/submitting-applications.html 常见的语法: ./bin/spark-submit \ ...
- 32、从零开始写CMOS摄像头驱动
使用的内核:linux-3.4.2 参考源码:第32课_新内核下的I2C驱动\i2c\1th_i2c_new_device第2课第1.1.7节文档和图片(从0写USB摄像头)\myuvc 设备地址:写 ...
- 22、DMA驱动程序框架
一.使用DMA的优点及DMA支持的请求源(请求源是启动DMA传输的事件,可以认为是触发.它可以是软件,也可以是中断,或者外部事件) 1.DMA优点是其进行数据传输时不需要CPU的干涉,可以大大提高CP ...
- C语言编程程序的内存怎样布局
在c语言中,每一个变量和函数有两个属性:数据类型和数据的存储类别. C语言中局部变量和全局变量变量的存储类别(static,extern,auto,register) 1. 从变量的作用域划分变量(即 ...
- [TypeStyle] Use fallback values in TypeStyle for better browser support
You can increase the browser support of your CSS using fallback values and vendor prefixes. This les ...
- Yarn架构基本概况(一)
1)引言 针对MRv1在扩展性.可靠性,资源利用率和多框架的支持上存在着明显的不足.进而诞生了下一代的MapReduce的计算框架MapReduce Version2,MRV1中有一个非常大的问题就是 ...