Project Euler:Problem 33 Digit cancelling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8,
which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, 30/50 = 3/5, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.
If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
#include <iostream>
using namespace std; int gcd(int a, int b)
{
while (b)
{
if (a < b)
{
int tmp = b;
b = a;
a = tmp;
}
int t = b;
b = a % b;
a = t;
}
return a;
} int main()
{
int fz = 1;
int fm = 1;
int res;
for (int x = 10; x <= 98; x++)
{
for (int y = x + 1; y <= 99; y++)
{
int a = x / 10;
int b = x % 10;
int c = y / 10;
int d = y % 10;
if ((b - c) == 0 && (y*a == x*d) && (d != 0))
{
fz *= a;
fm *= d;
}
}
}
res = fm / gcd(fz, fm);
cout << res << endl;
system("pause");
return 0;
}
Project Euler:Problem 33 Digit cancelling fractions的更多相关文章
- Project Euler:Problem 34 Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- Project Euler 33 Digit cancelling fractions
题意:49/98是一个有趣的分数,因为可能在化简时错误地认为,等式49/98 = 4/8之所以成立,是因为在分数线上下同时抹除了9的缘故.分子分母是两位数且分子小于分母的这种有趣的分数有4个,将这四个 ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- Project Euler:Problem 32 Pandigital products
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
随机推荐
- Nginx一个实现负载均衡的强大web server
<转>nginx 这个轻量级.高性能的 web server 主要可以干两件事情: 〉直接作为http server(代替apache,对PHP需要FastCGI处理器支持): 〉另外一个 ...
- [转]asp.net MVC 常见安全问题及解决方案
本文转自:http://www.cnblogs.com/Jessy/p/3539564.html asp.net MVC 常见安全问题及解决方案 一.CSRF (Cross-site request ...
- jQuery Tmpl使用
1.引入脚本 2.编写模板 2.1假设此时有一个,从后台一json格式发送来的数据 [{"tId":1,"tName":"张三"," ...
- 自己整理的css3动画库,附下载链接
动画调用语法 animation: bounceIn 0.3s ease 0.2s 1 both; 按顺序解释参数: 动画名称 如:bounceIn 一周期所用时间 如:0.3s 速度曲线 如:eas ...
- HTML TabIndex属性
TabIndex作用: tabindex:全局属性.指示其元素是否可以聚焦(获得焦点),以及它是否/在何处参与顺序键盘导航(因通常使用tab键操作,顾因此得名). 当使用tab键在网页控件中进行导航时 ...
- 一、CSS的基础样式
CSS的基础样式 border 边框 复合写法 border:border-width border-style border-color: border-width:边框宽度 top right ...
- Mac sierra下 wget安装
本文由@ray 出品,转载请注明出处. 文章链接:http://www.cnblogs.com/wolfray/p/8040699.html 没有Wget的日子是非常难过的,强大的Mac OS 下安 ...
- CAD调用移动命令
主要用到函数说明: _DMxDrawX::SendStringToExecuteFun 把命令当着函数执行,可以传参数,详细说明如下: 参数 说明 IDispatch* pParam 命令参数,IMx ...
- java的四种引用,强弱软虚和jvm优化
1.强引用(StrongReference)强引用是使用最普遍的引用.如果一个对象具有强引用,那垃圾回收器绝不会回收它.如下: Object o=new Object(); // 强引用 当内存 ...
- [系统资源攻略]CPU使用率和负载
我们在搞性能测试的时候,对后台服务器的CPU利用率监控是一个常用的手段.服务器的CPU利用率高,则表明服务器很繁忙.如果前台响应时间越来越大,而后台CPU利用率始终上不去,说明在某个地方有瓶颈了,系统 ...