Project Euler:Problem 33 Digit cancelling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8,
which is correct, is obtained by cancelling the 9s.
We shall consider fractions like, 30/50 = 3/5, to be trivial examples.
There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits in the numerator and denominator.
If the product of these four fractions is given in its lowest common terms, find the value of the denominator.
#include <iostream>
using namespace std; int gcd(int a, int b)
{
while (b)
{
if (a < b)
{
int tmp = b;
b = a;
a = tmp;
}
int t = b;
b = a % b;
a = t;
}
return a;
} int main()
{
int fz = 1;
int fm = 1;
int res;
for (int x = 10; x <= 98; x++)
{
for (int y = x + 1; y <= 99; y++)
{
int a = x / 10;
int b = x % 10;
int c = y / 10;
int d = y % 10;
if ((b - c) == 0 && (y*a == x*d) && (d != 0))
{
fz *= a;
fm *= d;
}
}
}
res = fm / gcd(fz, fm);
cout << res << endl;
system("pause");
return 0;
}
Project Euler:Problem 33 Digit cancelling fractions的更多相关文章
- Project Euler:Problem 34 Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are ...
- Project Euler 33 Digit cancelling fractions
题意:49/98是一个有趣的分数,因为可能在化简时错误地认为,等式49/98 = 4/8之所以成立,是因为在分数线上下同时抹除了9的缘故.分子分母是两位数且分子小于分母的这种有趣的分数有4个,将这四个 ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- Project Euler:Problem 32 Pandigital products
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
随机推荐
- 【转】linux下vi命令大全
转自:http://www.cnblogs.com/88999660/articles/1581524.html 进入vi的命令 vi filename :打开或新建文件,并将光标置于第一行首 vi ...
- Hadoop Hive概念学习系列之hive与依赖环境的交互(二十一)
hive与环境的交互,算是一个小知识点,但掌握不菲! 如何在hive里,也达到这样呢? 不需要这样啦,因为,hive是建立在hadoop之上,启动hive,相当于,就是,hadoop jar ** h ...
- [转]Window2008站点安全设置,IIS7/IIS7.5中目录执行权限的设置方法
本文转自:http://blog.snsgou.com/post-510.html 最近帮一个朋友管理Window 2008服务器,发现有个站点是用asp写的,更可怕的是还有传说中的“上传漏洞”,在上 ...
- jsp之servlet模板问题
如果你在web项目下创建一个Servlet类,那么它会自带很多东西,比如有很多的注释,还有很多out.println()语句等.可能这些东西都不是你需要,这样看起来就会比较的令人不爽.下面的话就教大家 ...
- 实现strcpy
#include <stddef.h> char* strcpy(char* dest, const char* src) { if (dest == NULL || src == NUL ...
- JDBC链接数据库步骤
java中定义链接数据库的标准:JDBC 1.导包:不同数据库有不同的jdbc驱动包,而且jdbc驱动包和数据库版本必须对应 2.测试 3.写代码 try { 1.//加载JDBC驱动 Clas ...
- Java编译器、JVM、解释器
Java虚拟机(JVM)是可运行Java代码的假想计算机.只要根据JVM规格描述将解释器移植到特定的计算机上,就能保证经过编译的任何Java代码能够在该系统上运行.本文首先简要介绍从Java文件的编译 ...
- iOS标准库中常用数据结构和算法之查找
参数: key: [in] 要查找的元素.base:[in] 数组元素的首地址.nelp: [in/out] 数组的元素个数指针.width: [in] 数组中每个元素的尺寸.compar: [in] ...
- Scala 技术笔记之 Option Some None
避免null使用 大多数语言都有一个特殊的关键字或者对象来表示一个对象引用的是“无”,在Java,它是null.在Java 里,null 是一个关键字,不是一个对象,所以对它调用任何方法都是非法的.但 ...
- centos中安装tomcat
1.先保证centos中安装了jre的环境. 2.上传tomcat的压缩包到root根目录. 3.切换到根目录 输入命令cd ~ , 然后 ll , 查看上传情况: 4.选中复制压缩文件,输入解压命令 ...