P1034 矩形覆盖
题目描述
在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。
输入输出格式
输入格式:
n k xl y1 x2 y2 ... ...
xn yn (0<=xi,yi<=500)
输出格式:
输出至屏幕。格式为:
一个整数,即满足条件的最小的矩形面积之和。
输入输出样例
4 2
1 1
2 2
3 6
0 7
用dp[i][j][k]表示,用k个矩形,覆盖i到j号点,所需要的最小面积
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#define lli long long int
using namespace std;
const int MAXN=;
void read(int &n)
{
char c='+';int x=;bool flag=;
while(c<''||c>'')
{c=getchar();if(c=='-')flag=;}
while(c>=''&&c<='')
{x=x*+(c-);c=getchar();}
flag==?n=-x:n=x;
}
int n,k;
struct node
{
int x,y;
}point[MAXN];
int dp[MAXN][MAXN][];
int comp(const node &a,const node &b)
{
if(a.y==b.y)
return a.x<b.x;
else
return a.y<b.y;
}
int main()
{
//freopen("jxfg.in","r",stdin);
//freopen("jxfg.out","w",stdout);
read(n);read(k);
for(int i=;i<=n;i++)
{
read(point[i].x);
read(point[i].y);
}
memset(dp,0x3f,sizeof(dp));
sort(point+,point+n+,comp);
for(int i=;i<=n;i++)
{
int l,r;
l=r=point[i].x;
for(int j=i+;j<=n;j++)
{
r=max(r,point[j].x);
l=min(l,point[j].x);
dp[i][j][]=min(dp[i][j][],(r-l)*(point[j].y-point[i].y));
}
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=i+;k<j;k++)
dp[i][j][]=min(dp[i][j][],dp[i][k][]+dp[k+][j][]); for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=i+;k<j;k++)
{
dp[i][j][]=min(dp[i][j][],dp[i][k][]+dp[k+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][k][]+dp[k+][j][]);
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=i+;k<j;k++)
{
dp[i][j][]=min(dp[i][j][],dp[i][k][]+dp[k+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][k][]+dp[k+][j][]);
dp[i][j][]=min(dp[i][j][],dp[i][k][]+dp[k+][j][]);
}
if(dp[][n][k]==)
dp[][n][k]=;
printf("%d",dp[][n][k]);
return ;
}
P1034 矩形覆盖的更多相关文章
- 洛谷P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...
- 洛谷 P1034 矩形覆盖
P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1(1,11,1),p_2p2( ...
- 洛谷 - P1034 - 矩形覆盖 - dfs
https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...
- [NOIP2002] 提高组 洛谷P1034 矩形覆盖
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- 洛谷——P1034 矩形覆盖
https://www.luogu.org/problem/show?pid=1034 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的 ...
- luoguP1034 矩形覆盖 x
P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...
- 【OpenJudge 1793】矩形覆盖
http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
随机推荐
- HTML input 控件
<input type="file" id="file1" onChange="test()"> function test() ...
- react功能实现-数组遍历渲染
在react中如何将一个数组遍历,并且逐个渲染在页面上? 1.在jsx渲染中,如果这个变量是一个数组,则会展开这个数组的所有成员. var arr = [ <h1>Hello world! ...
- Webpack 快速上手(下)
杏仁前端开发工程师,代码洁癖症早期,关注前端技术. 由于文章篇幅较长,为了更好的阅读体验,本文分为上.中.下三篇: 上篇介绍了什么是 webpack,为什么需要 webpack,webpack 的文件 ...
- Git创建本地分支并关联远程分支(一)
默认,git项目只有一个分支,就是master,我们当然可以在本地创建多个分支,并推送到远程git管理平台上,或者将远程git管理平台上的其他分支拉取到自己电脑上. 一.查看本地已有的分支 进入到项目 ...
- 非传统题初探——AtCoder Practice Contest #B - インタラクティブ練習 (Interactive Sorting)
原题: Time limit : 2sec / Memory limit : 256MB Score : 300 points Problem Statement This is an interac ...
- 洛谷P1002 过河卒【dp】
棋盘上AA点有一个过河卒,需要走到目标BB点.卒行走的规则:可以向下.或者向右.同时在棋盘上CC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为"马拦过河卒 ...
- [luogu4159 SCOI2009] 迷路(矩阵乘法)
传送门 Solution 矩阵乘法新姿势qwq 我们知道当边权为1是我们可以利用矩阵快速幂来方便的求出路径数 那么对于边权很小的时候,我们可以将每个点都拆成若干个点 然后就将边权不为1转化为边权为1了 ...
- [luogu 1092] 虫食算 (暴力搜索剪枝)
传送门 Description Input 包含四行. 第一行有一个正整数 (N≤26). 后面的三行,每行有一个由大写字母组成的字符串,分别代表两个加数以及和.这3个字符串左右两端都没有空格,从高位 ...
- 08.Web服务器-4.Web服务器动态资源请求
1 浏览器请求动态页面过程 2 WSGI 怎么在你刚建立的Web服务器上运行一个Django应用和Flask应用,如何不做任何改变而适应不同的web架构呢? 在以前,选择 Python web 架构会 ...
- 58.fetch phbase
1.fetch phbase工作流程 The coordinating node identifies which documents need to be fetched and issues a ...