poj1860 & poj2240(Bellman-Ford)
1860的思路是将可以换得的不同种的货币的数量当作节点,每个兑换点当成边,然后我抄了个算法导论里面的Bellman-Ford算法,一次就过了。看discussion里面很多讨论精度的,我想都没想过……
2240是更简单的一个bellman-ford,基本和1860一样,就只多了个map容器的应用而已。
以下是1860:
#include <iostream>
using namespace std; struct Point{
int a, b;
double Rab, Cab, Rba, Cba;
}; int main()
{
int n, m, s;
double money;
Point point[];
cin >> n >> m >> s >> money;
for (int i = ; i < m; i++){
cin >> point[i].a >> point[i].b
>> point[i].Rab >> point[i].Cab
>> point[i].Rba >> point[i].Cba;
}
double node[];
memset(node, , sizeof(node));
node[s] = money;
for (int j = ; j <= n - ; j++){
for (int i = ; i < m; i++){
if (node[point[i].a] < (node[point[i].b] - point[i].Cba) * point[i].Rba)
node[point[i].a] = (node[point[i].b] - point[i].Cba) * point[i].Rba;
if (node[point[i].b] < (node[point[i].a] - point[i].Cab) * point[i].Rab)
node[point[i].b] = (node[point[i].a] - point[i].Cab) * point[i].Rab;
}
}
bool flag = true;
for (int i = ; i < m; i++){
if (node[point[i].a] < (node[point[i].b] - point[i].Cba) * point[i].Rba
|| node[point[i].b] < (node[point[i].a] - point[i].Cab) * point[i].Rab){
flag = false;
break;
}
}
cout << (flag ? "NO" : "YES") << endl;
return ;
}
2240:
#include <iostream>
#include <map>
#include <string>
using namespace std; struct Edge{
int type1, type2;
double rate;
}; int main()
{
int n;
int testCase = ;
while (cin >> n && n != ){
double node[];
Edge edge[];
map<string, int> currency;
for (int i = ; i < n; i++){
string type;
cin >> type;
currency[type] = i;
}
int m;
cin >> m;
for (int i = ; i < m; i++){
string type1, type2;
double r;
cin >> type1 >> r >> type2;
edge[i].type1 = currency[type1];
edge[i].type2 = currency[type2];
edge[i].rate = r;
}
for (int i = ; i < n; i++){
node[i] = ;
}
node[] = ;
for (int i = ; i <= n - ; i++){
for (int j = ; j < m; j++){
double tmp = node[edge[j].type1] * edge[j].rate;
if (node[edge[j].type2] < tmp){
node[edge[j].type2] = tmp;
}
}
}
bool flag = false;
for (int i = ; i < m; i++){
if (node[edge[i].type2] < node[edge[i].type1] * edge[i].rate){
flag = true;
break;
}
}
cout << "Case " << testCase << ": " << (flag ? "Yes" : "No") << endl;
testCase++;
}
return ;
}
poj1860 & poj2240(Bellman-Ford)的更多相关文章
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- poj1860 兑换货币(bellman ford判断正环)
传送门:点击打开链接 题目大意:一个城市有n种货币,m个货币交换点,你有v的钱,每个交换点只能交换两种货币,(A换B或者B换A),每一次交换都有独特的汇率和手续费,问你存不存在一种换法使原来的钱更多. ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- POJ 2240 Arbitrage (Bellman Ford判正环)
Arbitrage Time Limit: 1000MS Memory Limit: 65536K Total Submissions:27167 Accepted: 11440 Descri ...
- poj1860(Bellman—fold)
题目连接:http://poj.org/problem?id=1860 Description Several currency exchange points are working in our ...
- ACM/ICPC 之 Bellman Ford练习题(ZOJ1791(POJ1613))
这道题稍复杂一些,需要掌握字符串输入的处理+限制了可以行走的时间. ZOJ1791(POJ1613)-Cave Raider //限制行走时间的最短路 //POJ1613-ZOJ1791 //Time ...
随机推荐
- HDU 1573 CRT
CRT模板题 /** @Date : 2017-09-15 13:52:21 * @FileName: HDU 1573 CRT EXGCD.cpp * @Platform: Windows * @A ...
- HDU 3507 单调队列 斜率优化
斜率优化的模板题 给出n个数以及M,你可以将这些数划分成几个区间,每个区间的值是里面数的和的平方+M,问所有区间值总和最小是多少. 如果不考虑平方,那么我们显然可以使用队列维护单调性,优化DP的线性方 ...
- git使用(1)----推送代码到远程
git使用(1) 首先要明白git上有三个区域 1.工作区 2.暂存区 3.历史记录区 步骤: 1.git init 2.配置环境(如果配置一次了以后就不用再继续配置) git config - ...
- IDEA 启动时,报“淇℃伅”的字符
IDEA 启动时,报“淇℃伅”的字符,如下: 解决办法: 修改tomcat安装目录下的config/logging.properties文件,找到java.util.logging.ConsoleHa ...
- 基于canvas实现的fontawesome动态图标
由于还没有全部实现,实现了一些demo,demo地址在 https://github.com/jiangzhenfei/canvas-fontawesome 实现了动态loading 实现动态电池充电 ...
- 手机网页的头部meta的相关配置~~
今天使用sublime写手机端网页的时候,发现木有meta的自动生成手机网页的快捷键·~ 然后就去网上巴拉,准备存储一份~~哈哈 一.天猫 <title>天猫触屏版</title&g ...
- 64_n3
nodejs-yamlish-0.0.5-9.fc26.noarch.rpm 11-Feb-2017 16:48 11966 nodejs-yargs-3.2.1-6.fc26.noarch.rpm ...
- Petrozavodsk Summer Training Camp 2017 Day 9
Petrozavodsk Summer Training Camp 2017 Day 9 Problem A. Building 题目描述:给出一棵树,在树上取出一条简单路径,使得该路径的最长上升子序 ...
- 26_Python的内置函数
The Python interpreter has a number of functions and types built into it that are always available.P ...
- ELK简单使用
原作者:http://www.cnblogs.com/snidget/p/6269383.html ELK ELK是什么? Elasticsearch LogStash Kibana 1,简单 ...