Spark机器学习9· 实时机器学习(scala with sbt)
1 在线学习
模型随着接收的新消息,不断更新自己;而不是像离线训练一次次重新训练。
2 Spark Streaming
- 离散化流(DStream)
输入源:Akka actors、消息队列、Flume、Kafka、……
http://spark.apache.org/docs/latest/streaming-programming-guide.html
类群(lineage):应用到RDD上的转换算子和执行算子的集合
3 MLib+Streaming应用
3.0 build.sbt
依赖Spark MLlib和Spark Streaming
name := "scala-spark-streaming-app"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.5.1"
libraryDependencies += "org.apache.spark" %% "spark-streaming" % "1.5.1"
使用国内镜像仓库
~/.sbt/repositories
[repositories]
local
osc: http://maven.oschina.net/content/groups/public/
typesafe: http://repo.typesafe.com/typesafe/ivy-releases/, [organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-[classifier]).[ext], bootOnly
sonatype-oss-releases
maven-central
sonatype-oss-snapshots
3.1 生产消息
object StreamingProducer {
def main(args: Array[String]) {
val random = new Random()
// Maximum number of events per second
val MaxEvents = 6
// Read the list of possible names
val namesResource = this.getClass.getResourceAsStream("/names.csv")
val names = scala.io.Source.fromInputStream(namesResource)
.getLines()
.toList
.head
.split(",")
.toSeq
// Generate a sequence of possible products
val products = Seq(
"iPhone Cover" -> 9.99,
"Headphones" -> 5.49,
"Samsung Galaxy Cover" -> 8.95,
"iPad Cover" -> 7.49
)
/** Generate a number of random product events */
def generateProductEvents(n: Int) = {
(1 to n).map { i =>
val (product, price) = products(random.nextInt(products.size))
val user = random.shuffle(names).head
(user, product, price)
}
}
// create a network producer
val listener = new ServerSocket(9999)
println("Listening on port: 9999")
while (true) {
val socket = listener.accept()
new Thread() {
override def run = {
println("Got client connected from: " + socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream(), true)
while (true) {
Thread.sleep(1000)
val num = random.nextInt(MaxEvents)
val productEvents = generateProductEvents(num)
productEvents.foreach{ event =>
out.write(event.productIterator.mkString(","))
out.write("\n")
}
out.flush()
println(s"Created $num events...")
}
socket.close()
}
}.start()
}
}
}
sbt run
Multiple main classes detected, select one to run:
[1] MonitoringStreamingModel
[2] SimpleStreamingApp
[3] SimpleStreamingModel
[4] StreamingAnalyticsApp
[5] StreamingModelProducer
[6] StreamingProducer
[7] StreamingStateApp
Enter number: 6
3.2 打印消息
object SimpleStreamingApp {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999)
// here we simply print out the first few elements of each batch
stream.print()
ssc.start()
ssc.awaitTermination()
}
}
sbt run
Enter number: 2
3.3 流式分析
object StreamingAnalyticsApp {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999)
// create stream of events from raw text elements
val events = stream.map { record =>
val event = record.split(",")
(event(0), event(1), event(2))
}
/*
We compute and print out stats for each batch.
Since each batch is an RDD, we call forEeachRDD on the DStream, and apply the usual RDD functions
we used in Chapter 1.
*/
events.foreachRDD { (rdd, time) =>
val numPurchases = rdd.count()
val uniqueUsers = rdd.map { case (user, _, _) => user }.distinct().count()
val totalRevenue = rdd.map { case (_, _, price) => price.toDouble }.sum()
val productsByPopularity = rdd
.map { case (user, product, price) => (product, 1) }
.reduceByKey(_ + _)
.collect()
.sortBy(-_._2)
val mostPopular = productsByPopularity(0)
val formatter = new SimpleDateFormat
val dateStr = formatter.format(new Date(time.milliseconds))
println(s"== Batch start time: $dateStr ==")
println("Total purchases: " + numPurchases)
println("Unique users: " + uniqueUsers)
println("Total revenue: " + totalRevenue)
println("Most popular product: %s with %d purchases".format(mostPopular._1, mostPopular._2))
}
// start the context
ssc.start()
ssc.awaitTermination()
}
}
sbt run
Enter number: 4
3.4 有状态的流计算
object StreamingStateApp {
import org.apache.spark.streaming.StreamingContext._
def updateState(prices: Seq[(String, Double)], currentTotal: Option[(Int, Double)]) = {
val currentRevenue = prices.map(_._2).sum
val currentNumberPurchases = prices.size
val state = currentTotal.getOrElse((0, 0.0))
Some((currentNumberPurchases + state._1, currentRevenue + state._2))
}
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
// for stateful operations, we need to set a checkpoint location
ssc.checkpoint("/tmp/sparkstreaming/")
val stream = ssc.socketTextStream("localhost", 9999)
// create stream of events from raw text elements
val events = stream.map { record =>
val event = record.split(",")
(event(0), event(1), event(2).toDouble)
}
val users = events.map { case (user, product, price) => (user, (product, price)) }
val revenuePerUser = users.updateStateByKey(updateState)
revenuePerUser.print()
// start the context
ssc.start()
ssc.awaitTermination()
}
}
sbt run
Enter number: 7
4 线性流回归
线性回归StreamingLinearRegressionWithSGD
- trainOn
- predictOn
4.1 流数据生成器
object StreamingModelProducer {
import breeze.linalg._
def main(args: Array[String]) {
// Maximum number of events per second
val MaxEvents = 100
val NumFeatures = 100
val random = new Random()
/** Function to generate a normally distributed dense vector */
def generateRandomArray(n: Int) = Array.tabulate(n)(_ => random.nextGaussian())
// Generate a fixed random model weight vector
val w = new DenseVector(generateRandomArray(NumFeatures))
val intercept = random.nextGaussian() * 10
/** Generate a number of random product events */
def generateNoisyData(n: Int) = {
(1 to n).map { i =>
val x = new DenseVector(generateRandomArray(NumFeatures))
val y: Double = w.dot(x)
val noisy = y + intercept //+ 0.1 * random.nextGaussian()
(noisy, x)
}
}
// create a network producer
val listener = new ServerSocket(9999)
println("Listening on port: 9999")
while (true) {
val socket = listener.accept()
new Thread() {
override def run = {
println("Got client connected from: " + socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream(), true)
while (true) {
Thread.sleep(1000)
val num = random.nextInt(MaxEvents)
val data = generateNoisyData(num)
data.foreach { case (y, x) =>
val xStr = x.data.mkString(",")
val eventStr = s"$y\t$xStr"
out.write(eventStr)
out.write("\n")
}
out.flush()
println(s"Created $num events...")
}
socket.close()
}
}.start()
}
}
}
sbt run
Enter number: 5
4.2 流回归模型
object SimpleStreamingModel {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999)
val NumFeatures = 100
val zeroVector = DenseVector.zeros[Double](NumFeatures)
val model = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(0.01)
// create a stream of labeled points
val labeledStream: DStream[LabeledPoint] = stream.map { event =>
val split = event.split("\t")
val y = split(0).toDouble
val features: Array[Double] = split(1).split(",").map(_.toDouble)
LabeledPoint(label = y, features = Vectors.dense(features))
}
// train and test model on the stream, and print predictions for illustrative purposes
model.trainOn(labeledStream)
//model.predictOn(labeledStream).print()
ssc.start()
ssc.awaitTermination()
}
}
sbt run
Enter number: 5
5 流K-均值
- K-均值聚类:StreamingKMeans
6 评估
object MonitoringStreamingModel {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999)
val NumFeatures = 100
val zeroVector = DenseVector.zeros[Double](NumFeatures)
val model1 = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(0.01)
val model2 = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(1.0)
// create a stream of labeled points
val labeledStream = stream.map { event =>
val split = event.split("\t")
val y = split(0).toDouble
val features = split(1).split(",").map(_.toDouble)
LabeledPoint(label = y, features = Vectors.dense(features))
}
// train both models on the same stream
model1.trainOn(labeledStream)
model2.trainOn(labeledStream)
// use transform to create a stream with model error rates
val predsAndTrue = labeledStream.transform { rdd =>
val latest1 = model1.latestModel()
val latest2 = model2.latestModel()
rdd.map { point =>
val pred1 = latest1.predict(point.features)
val pred2 = latest2.predict(point.features)
(pred1 - point.label, pred2 - point.label)
}
}
// print out the MSE and RMSE metrics for each model per batch
predsAndTrue.foreachRDD { (rdd, time) =>
val mse1 = rdd.map { case (err1, err2) => err1 * err1 }.mean()
val rmse1 = math.sqrt(mse1)
val mse2 = rdd.map { case (err1, err2) => err2 * err2 }.mean()
val rmse2 = math.sqrt(mse2)
println(
s"""
|-------------------------------------------
|Time: $time
|-------------------------------------------
""".stripMargin)
println(s"MSE current batch: Model 1: $mse1; Model 2: $mse2")
println(s"RMSE current batch: Model 1: $rmse1; Model 2: $rmse2")
println("...\n")
}
ssc.start()
ssc.awaitTermination()
}
}
sbt run
Enter number: 1
Spark机器学习9· 实时机器学习(scala with sbt)的更多相关文章
- Spark机器学习1·编程入门(scala/java/python)
Spark安装目录 /Users/erichan/Garden/spark-1.4.0-bin-hadoop2.6 基本测试 ./bin/run-example org.apache.spark.ex ...
- 【原】Learning Spark (Python版) 学习笔记(四)----Spark Sreaming与MLlib机器学习
本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming ...
- Spark Sreaming与MLlib机器学习
Spark Sreaming与MLlib机器学习 本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10 ...
- 使用spark ml pipeline进行机器学习
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...
- spark ml pipeline构建机器学习任务
一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流 ...
- Spark集群 + Akka + Kafka + Scala 开发(3) : 开发一个Akka + Spark的应用
前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...
- 基于Spark环境对比Python和Scala语言利弊
在数据挖掘中,Python和Scala语言都是极受欢迎的,本文总结两种语言在Spark环境各自特点. 本文翻译自 https://www.dezyre.com/article/Scala-vs-Py ...
- 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...
- Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用
前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境,我们已经部署好了一个Spark的开发环境. 本文的目标是写一个Spark应用,并可以在集群中测试. ...
随机推荐
- cocos lua 加密方案
cocos2d使用的是luajit,lua原生编译出来的bytecode和luajit是不兼容的,所以直接用luac法编译出来的bytecode脚本无法在cocos2d中使用. 目前所指的解决方案有2 ...
- sql列转行查询
test表: 执行列转行sql: select student, sum(case Course when '语文' then Score else null end) 语文, sum(case Co ...
- Java反序列化漏洞的挖掘、攻击与防御
一.Java反序列化漏洞的挖掘 1.黑盒流量分析: 在Java反序列化传送的包中,一般有两种传送方式,在TCP报文中,一般二进制流方式传输,在HTTP报文中,则大多以base64传输.因而在流量中有一 ...
- 简介Objective-C语言
2011-05-11 11:20 佚名 百度百科 字号:T | T Objective-C,是扩充C的面向对象编程语言.主要使用于Mac OS X和GNUstep这两个使用OpenStep标准的系统, ...
- vue兄弟组件传值
vue中除了父子组件传值,父传子用props,子传父用$emit,有时候兄弟组件之间也需要传值 1. 先定义一个中间件,src下面新建self.js import Vue from 'vue'; le ...
- HDU_5527_Too Rich
Too Rich Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- java中 synchronized 的使用,确保异步执行某一段代码。
最近看了个有关访问网络url和下载的例子,里面有几个synchronized的地方,系统学习下,以下内容很重要,记下来. Java语言的关键字,当它用来修饰一个方法或者一个代码块的时候,能够保证在同一 ...
- Oracle 实现拆分列数据的split()方法
-- 创建需要划分的字符串 with T1 as( select 'one,two,three,four,five,six,seven,eight,nine,zero' as source_strin ...
- 为什么使用Sails?
http://sailsdoc.swift.ren/ 这里有 sails中文文档 http://www.jianshu.com/p/ac2da4142259 前言 入手Node.js半年,从用Expr ...
- js原生函数bind
/*在javascript中,函数总是在一个特殊的上下文执行(称为执行上下文),如果你将一个对象的函数赋值给另外一个变量的话,这个函数的执行上下文就变为这个变量的上下文了.下面的一个例子能很好的说明这 ...