1 在线学习

模型随着接收的新消息,不断更新自己;而不是像离线训练一次次重新训练。

2 Spark Streaming

3 MLib+Streaming应用

3.0 build.sbt

依赖Spark MLlib和Spark Streaming

name := "scala-spark-streaming-app"

version := "1.0"

scalaVersion := "2.11.7"

libraryDependencies += "org.apache.spark" %% "spark-mllib" % "1.5.1"

libraryDependencies += "org.apache.spark" %% "spark-streaming" % "1.5.1"
使用国内镜像仓库

~/.sbt/repositories

[repositories]
local
osc: http://maven.oschina.net/content/groups/public/
typesafe: http://repo.typesafe.com/typesafe/ivy-releases/, [organization]/[module]/(scala_[scalaVersion]/)(sbt_[sbtVersion]/)[revision]/[type]s/[artifact](-[classifier]).[ext], bootOnly
sonatype-oss-releases
maven-central
sonatype-oss-snapshots

3.1 生产消息

object StreamingProducer {

  def main(args: Array[String]) {

    val random = new Random()

    // Maximum number of events per second
val MaxEvents = 6 // Read the list of possible names
val namesResource = this.getClass.getResourceAsStream("/names.csv")
val names = scala.io.Source.fromInputStream(namesResource)
.getLines()
.toList
.head
.split(",")
.toSeq // Generate a sequence of possible products
val products = Seq(
"iPhone Cover" -> 9.99,
"Headphones" -> 5.49,
"Samsung Galaxy Cover" -> 8.95,
"iPad Cover" -> 7.49
) /** Generate a number of random product events */
def generateProductEvents(n: Int) = {
(1 to n).map { i =>
val (product, price) = products(random.nextInt(products.size))
val user = random.shuffle(names).head
(user, product, price)
}
} // create a network producer
val listener = new ServerSocket(9999)
println("Listening on port: 9999") while (true) {
val socket = listener.accept()
new Thread() {
override def run = {
println("Got client connected from: " + socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream(), true) while (true) {
Thread.sleep(1000)
val num = random.nextInt(MaxEvents)
val productEvents = generateProductEvents(num)
productEvents.foreach{ event =>
out.write(event.productIterator.mkString(","))
out.write("\n")
}
out.flush()
println(s"Created $num events...")
}
socket.close()
}
}.start()
}
}
}
sbt run

Multiple main classes detected, select one to run:

 [1] MonitoringStreamingModel
[2] SimpleStreamingApp
[3] SimpleStreamingModel
[4] StreamingAnalyticsApp
[5] StreamingModelProducer
[6] StreamingProducer
[7] StreamingStateApp Enter number: 6

3.2 打印消息

object SimpleStreamingApp {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999)
// here we simply print out the first few elements of each batch
stream.print()
ssc.start()
ssc.awaitTermination()
}
}
sbt run

Enter number: 2

3.3 流式分析

object StreamingAnalyticsApp {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999) // create stream of events from raw text elements
val events = stream.map { record =>
val event = record.split(",")
(event(0), event(1), event(2))
} /*
We compute and print out stats for each batch.
Since each batch is an RDD, we call forEeachRDD on the DStream, and apply the usual RDD functions
we used in Chapter 1.
*/
events.foreachRDD { (rdd, time) =>
val numPurchases = rdd.count()
val uniqueUsers = rdd.map { case (user, _, _) => user }.distinct().count()
val totalRevenue = rdd.map { case (_, _, price) => price.toDouble }.sum()
val productsByPopularity = rdd
.map { case (user, product, price) => (product, 1) }
.reduceByKey(_ + _)
.collect()
.sortBy(-_._2)
val mostPopular = productsByPopularity(0) val formatter = new SimpleDateFormat
val dateStr = formatter.format(new Date(time.milliseconds))
println(s"== Batch start time: $dateStr ==")
println("Total purchases: " + numPurchases)
println("Unique users: " + uniqueUsers)
println("Total revenue: " + totalRevenue)
println("Most popular product: %s with %d purchases".format(mostPopular._1, mostPopular._2))
} // start the context
ssc.start()
ssc.awaitTermination()
}
}
sbt run

Enter number: 4

3.4 有状态的流计算

object StreamingStateApp {

  import org.apache.spark.streaming.StreamingContext._

  def updateState(prices: Seq[(String, Double)], currentTotal: Option[(Int, Double)]) = {
val currentRevenue = prices.map(_._2).sum
val currentNumberPurchases = prices.size
val state = currentTotal.getOrElse((0, 0.0))
Some((currentNumberPurchases + state._1, currentRevenue + state._2))
} def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
// for stateful operations, we need to set a checkpoint location
ssc.checkpoint("/tmp/sparkstreaming/")
val stream = ssc.socketTextStream("localhost", 9999)
// create stream of events from raw text elements
val events = stream.map { record =>
val event = record.split(",")
(event(0), event(1), event(2).toDouble)
}
val users = events.map { case (user, product, price) => (user, (product, price)) }
val revenuePerUser = users.updateStateByKey(updateState)
revenuePerUser.print()
// start the context
ssc.start()
ssc.awaitTermination()
}
}
sbt run

Enter number: 7

4 线性流回归

线性回归StreamingLinearRegressionWithSGD

  • trainOn
  • predictOn

4.1 流数据生成器

object StreamingModelProducer {

  import breeze.linalg._

  def main(args: Array[String]) {
// Maximum number of events per second
val MaxEvents = 100
val NumFeatures = 100
val random = new Random() /** Function to generate a normally distributed dense vector */
def generateRandomArray(n: Int) = Array.tabulate(n)(_ => random.nextGaussian()) // Generate a fixed random model weight vector
val w = new DenseVector(generateRandomArray(NumFeatures))
val intercept = random.nextGaussian() * 10 /** Generate a number of random product events */
def generateNoisyData(n: Int) = {
(1 to n).map { i =>
val x = new DenseVector(generateRandomArray(NumFeatures))
val y: Double = w.dot(x)
val noisy = y + intercept //+ 0.1 * random.nextGaussian()
(noisy, x)
}
} // create a network producer
val listener = new ServerSocket(9999)
println("Listening on port: 9999") while (true) {
val socket = listener.accept()
new Thread() {
override def run = {
println("Got client connected from: " + socket.getInetAddress)
val out = new PrintWriter(socket.getOutputStream(), true) while (true) {
Thread.sleep(1000)
val num = random.nextInt(MaxEvents)
val data = generateNoisyData(num)
data.foreach { case (y, x) =>
val xStr = x.data.mkString(",")
val eventStr = s"$y\t$xStr"
out.write(eventStr)
out.write("\n")
}
out.flush()
println(s"Created $num events...")
}
socket.close()
}
}.start()
}
}
}
sbt run

Enter number: 5

4.2 流回归模型

object SimpleStreamingModel {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999) val NumFeatures = 100
val zeroVector = DenseVector.zeros[Double](NumFeatures)
val model = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(0.01) // create a stream of labeled points
val labeledStream: DStream[LabeledPoint] = stream.map { event =>
val split = event.split("\t")
val y = split(0).toDouble
val features: Array[Double] = split(1).split(",").map(_.toDouble)
LabeledPoint(label = y, features = Vectors.dense(features))
} // train and test model on the stream, and print predictions for illustrative purposes
model.trainOn(labeledStream)
//model.predictOn(labeledStream).print() ssc.start()
ssc.awaitTermination()
}
}
sbt run

Enter number: 5

5 流K-均值

  • K-均值聚类:StreamingKMeans

6 评估

object MonitoringStreamingModel {
def main(args: Array[String]) {
val ssc = new StreamingContext("local[2]", "First Streaming App", Seconds(10))
val stream = ssc.socketTextStream("localhost", 9999) val NumFeatures = 100
val zeroVector = DenseVector.zeros[Double](NumFeatures)
val model1 = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(0.01) val model2 = new StreamingLinearRegressionWithSGD()
.setInitialWeights(Vectors.dense(zeroVector.data))
.setNumIterations(1)
.setStepSize(1.0) // create a stream of labeled points
val labeledStream = stream.map { event =>
val split = event.split("\t")
val y = split(0).toDouble
val features = split(1).split(",").map(_.toDouble)
LabeledPoint(label = y, features = Vectors.dense(features))
} // train both models on the same stream
model1.trainOn(labeledStream)
model2.trainOn(labeledStream) // use transform to create a stream with model error rates
val predsAndTrue = labeledStream.transform { rdd =>
val latest1 = model1.latestModel()
val latest2 = model2.latestModel()
rdd.map { point =>
val pred1 = latest1.predict(point.features)
val pred2 = latest2.predict(point.features)
(pred1 - point.label, pred2 - point.label)
}
} // print out the MSE and RMSE metrics for each model per batch
predsAndTrue.foreachRDD { (rdd, time) =>
val mse1 = rdd.map { case (err1, err2) => err1 * err1 }.mean()
val rmse1 = math.sqrt(mse1)
val mse2 = rdd.map { case (err1, err2) => err2 * err2 }.mean()
val rmse2 = math.sqrt(mse2)
println(
s"""
|-------------------------------------------
|Time: $time
|-------------------------------------------
""".stripMargin)
println(s"MSE current batch: Model 1: $mse1; Model 2: $mse2")
println(s"RMSE current batch: Model 1: $rmse1; Model 2: $rmse2")
println("...\n")
}
ssc.start()
ssc.awaitTermination()
}
}
sbt run

Enter number: 1

Spark机器学习9· 实时机器学习(scala with sbt)的更多相关文章

  1. Spark机器学习1·编程入门(scala/java/python)

    Spark安装目录 /Users/erichan/Garden/spark-1.4.0-bin-hadoop2.6 基本测试 ./bin/run-example org.apache.spark.ex ...

  2. 【原】Learning Spark (Python版) 学习笔记(四)----Spark Sreaming与MLlib机器学习

    本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming ...

  3. Spark Sreaming与MLlib机器学习

    Spark Sreaming与MLlib机器学习 本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10 ...

  4. 使用spark ml pipeline进行机器学习

    一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的 ...

  5. spark ml pipeline构建机器学习任务

    一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流 ...

  6. Spark集群 + Akka + Kafka + Scala 开发(3) : 开发一个Akka + Spark的应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + S ...

  7. 基于Spark环境对比Python和Scala语言利弊

    在数据挖掘中,Python和Scala语言都是极受欢迎的,本文总结两种语言在Spark环境各自特点. 本文翻译自  https://www.dezyre.com/article/Scala-vs-Py ...

  8. 苏宁基于Spark Streaming的实时日志分析系统实践 Spark Streaming 在数据平台日志解析功能的应用

    https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 20 ...

  9. Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用

    前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境,我们已经部署好了一个Spark的开发环境. 本文的目标是写一个Spark应用,并可以在集群中测试. ...

随机推荐

  1. 面试题思考:解释一下什么叫AOP(面向切面编程)

    这种在运行时,动态地将代码切入到类的指定方法.指定位置上的编程思想就是面向切面的编程. AOP是Spring提供的关键特性之一.AOP即面向切面编程,是OOP编程的有效补充. 使用AOP技术,可以将一 ...

  2. 《C#高级编程》学习笔记----c#内存管理--栈VS堆

    本文转载自Netprawn,原文英文版地址 尽管在.net framework中我们不太需要关注内存管理和垃圾回收这方面的问题,但是出于提高我们应用程序性能的目的,在我们的脑子里还是需要有这方面的意识 ...

  3. [Go语言]从Docker源码学习Go——Interfaces

    Interface定义: type Namer interface { Method1(param_list) return_type Method2(param_list) return_type ...

  4. 1358 棋盘游戏[状压dp]

    1358 棋盘游戏  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 这个游戏在一个有10*10 ...

  5. NIO中几个非常重要的技术点

    参考:http://ifeve.com/selectors/ 参考:https://www.ibm.com/developerworks/cn/education/java/j-nio/j-nio.h ...

  6. js功能实现的特效--距离新年还有多少天

    代码: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> & ...

  7. Java中break、continue、return语句的使用区别

    break.continue.return之间的区别与联系 在软件开发过程中,逻辑清晰是非常之重要的. 代码的规范也是非常重要的.往往细节决定成败.在编写代码的时候,一定要理解语言的作用以及使用的方法 ...

  8. Python--进阶处理4

    #================第四章:迭代器和生成器=================== # 函数 itertools.islice()适用于在迭代器和生成器上做切片操作. import ite ...

  9. Python目录整合

    一.python基础篇 二.网络编程篇&&并发编程篇 三.数据库篇 -mysql -redis -mongodb 四.前端篇 -html -css -js jquery&&am ...

  10. 关于LegacyExchangeDN的问题

    IMCEAEX i NDR This problem is not common but quite annoying and usually hard to understood by users. ...