[CF126D]Fibonacci Sums/[BJOI2012]最多的方案
[CF126D]Fibonacci Sums/[BJOI2012]最多的方案
题目大意:
将\(n(n\le10^9)\)表示成若干个不同斐波那契数之和的形式,求方案数。
思路:
如果不考虑\(0\),则\(10^9\)以内的斐波那契数只有86个。
首先求出字典序最大的方案,考虑分裂里面的数。
用\(c_i\)表示字典序最大方案在斐波那契数列中的下标(递增),\(f_{i,j}\)表示考虑到第\(i\)个数,本身是否分裂的方案数。
转移方程为:
f_{i,1}=\lfloor\frac{c_i-c_{i-1}-1}2\rfloor f_{i-1,0}+\lfloor\frac{c_i-c_{i-1}}2\rfloor f_{i-1,1}
\]
单次询问时间复杂度\(\mathcal O(86)\)。
源代码:
#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
int64 f[87][2],c[87],fib[87]={
0,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,1771\
1,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5\
702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296\
,433494437,701408733,1134903170,1836311903,2971215073ll,4807526976ll,7778742049l\
l,12586269025ll,20365011074ll,32951280099ll,53316291173ll,86267571272ll,13958386\
2445ll,225851433717ll,365435296162ll,591286729879ll,956722026041ll,1548008755920\
ll,2504730781961ll,4052739537881ll,6557470319842ll,10610209857723ll,171676801775\
65ll,27777890035288ll,44945570212853ll,72723460248141ll,117669030460994ll,190392\
490709135ll,308061521170129ll,498454011879264ll,806515533049393ll,13049695449286\
57ll,2111485077978050ll,3416454622906707ll,5527939700884757ll,8944394323791464ll\
,14472334024676221ll,23416728348467685ll,37889062373143906ll,61305790721611591ll\
,99194853094755497ll,160500643816367088ll,259695496911122585ll,42019614072748967\
3ll,679891637638612258ll
};
int main() {
for(register int T=getint();T;T--) {
int64 n=getint();
int cnt=0;
for(register int p=std::lower_bound(&fib[1],&fib[87],n)-fib;p;p--) {
if(n>=fib[p]) {
n-=fib[p];
c[++cnt]=p;
}
}
std::reverse(&c[1],&c[cnt]+1);
f[1][0]=1;
f[1][1]=(c[1]-1)/2;
for(register int i=2;i<=cnt;i++) {
f[i][0]=f[i-1][0]+f[i-1][1];
f[i][1]=f[i-1][0]*((c[i]-c[i-1]-1)/2)+f[i-1][1]*((c[i]-c[i-1])/2);
}
printf("%lld\n",f[cnt][0]+f[cnt][1]);
}
return 0;
}
[CF126D]Fibonacci Sums/[BJOI2012]最多的方案的更多相关文章
- BJOI2012 最多的方案
BJOI2012 最多的方案 Description 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数 ...
- [BJOI2012]最多的方案(记忆化搜索)
第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的和的形式. ...
- [luogu4133 BJOI2012] 最多的方案 (计数dp)
题目描述 第二关和很出名的斐波那契数列有关,地球上的OIer都知道:F1=1, F2=2, Fi = Fi-1 + Fi-2,每一项都可以称为斐波那契数.现在给一个正整数N,它可以写成一些斐波那契数的 ...
- BZOJ.2660.[BJOI2012]最多的方案(DP)
题目链接 首先我们知道: 也很好理解.如果相邻两项出现在斐波那契表示法中,那它们显然可以合并. 所以我们能得到\(n\)的斐波那契表示,记\(pos[i]\)为\(n\)的斐波那契表示法中,第\(i\ ...
- 洛谷 [BJOI2012]最多的方案
洛谷 这题是旁边同学介绍的,听他说记忆化搜索可以过... 不过我还是老老实实的想\(dp\)吧- 先看看数据范围,\(n\leq10^{18}\)相当于\(n \leq fib[86]\). 以前打\ ...
- 洛谷P4133 [BJOI2012]最多的方案(记忆化搜索)
题意 题目链接 求出把$n$分解为斐波那契数的方案数,方案两两不同的定义是分解出来的数不完全相同 Sol 这种题,直接爆搜啊... 打表后不难发现$<=1e18$的fib数只有88个 最先想到的 ...
- bzoj2660: [Beijing wc2012]最多的方案
题目链接 bzoj2660: [Beijing wc2012]最多的方案 题解 对于一个数的斐波那契数列分解,他的最少项分解是唯一的 我们在拆分成的相临两项之间分解后者,这样形成的方案是最优且不重的 ...
- bzoj2660最多的方案
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2660 当然可以看出 选了第 i 个斐波那契数<=>选了第 i - 1 和第 i ...
- CF(D. Fibonacci Sums)dp计数
题目链接:http://codeforces.com/contest/126/problem/D 题意:一个数能够有多种由互不同样的斐波那契数组成的情况: 解法:dp,easy证明:每一个数通过贪心能 ...
随机推荐
- 简易安装sqoop
版本 :hive-0.13.1-cdh5.3.6.tar.gz 1:解压 然后 进到 conf 目录 修改 sqoop-env.sh 2:如果使用mysql 数据库 要将 mysql驱动包拷贝到 ...
- Spring boot中使用log4j记录日志
之前在Spring Boot日志管理一文中主要介绍了Spring Boot中默认日志工具(logback)的基本配置内容.对于很多习惯使用log4j的开发者,Spring Boot依然可以很好的支持, ...
- python 版本zabbix_sender
python版本的zabbix_sender: 使用方法: 1.导入 : from zbx_send import info 2.实例化: test=info() 3.支持 ...
- 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)
题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...
- HDU 5995 Kblack loves flag (模拟)
题目链接 Problem Description Kblack loves flags, so he has infinite flags in his pocket. One day, Kblack ...
- nginx 配置代理某个路径
location /test{ proxy_pass http://localhost:8765/test; proxy_set_header Host $http_host; } 其中红色的那句可以 ...
- linux中的计算【转】
shell中的赋值和操作默认都是字符串处理,在此记下shell中进行数学运算的几个特殊方法,以后用到的时候可以来看,呵呵 1.错误方法举例 a) var=1+1 echo $var 输出的结果是1+1 ...
- gan对抗式网络
感觉好厉害,由上图噪声,生成左图噪声生成右图以假乱真的图片, gan网络原理: 本弱又盗了一坨博文,不是我写的,如下:(跪膜各路大神) 前面我们已经讲完了一般的深层网络,适用于图像的卷积神经网络,适用 ...
- linux下C语言编程,include的默认搜索路径
C语言编程时,发现细节的魅力很大.较为详细了看了一下关于include的知识,发现了几点新知: 1.include<头文件名>和include"头文件名" 如:incl ...
- [笔记]Linux NTP命令 (ESX适用)
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://delxu.blog.51cto.com/975660/307513 [推荐阅读] ...