vijos 1243 生产产品 DP + 单调队列优化
题意:有1个产品,m个步骤编号为1~m。步骤要在n个机器人的手中生产完成。其中,第i个步骤在第j个机器人手中的生产时间给定为$T[i][j]$,切换机器人消耗cost。步骤必须按顺序,同一个机器人不能连续完成超过l个步骤。求完成所有步骤的最短时间是多少。其中$m<=10^5$,$n<=5$,$l<=5*10^4$
思路:这题用DP考虑易得一个转移方程$dp[i][j]=\min^{i-1}_{v=i-L}{(dp[v][x] + sum[i][j] - sum[v][j]) + cost}$其中$sum[i][j]$代表前i步由j完成的时间和
从转移式上来看,j为要转移到的状态,x为出发态,相当于对每个步骤v都做$O(n^2)$的转移,直接暴力枚举的话总复杂度是$O(l·m·n^2)$
当L足够大时,显然这样的算法不够快,可以注意到v的枚举是顺序的,而且$dp[v][x] -sum[v][j]$在给定x和j时也满足单调性的要求,即当$dp[v][x] -sum[v][j]$得到更小的值后,最优值为新得到的值,那么使用二维优先队列维护从x机器人转移到j机器人,范围为L的优先队列,队列存储其划分的位置,这样一来我们可在$O(1)$复杂度内获得L范围内的最小值(队列中元素最多进出一次),优化后复杂度$O(m·n^2)$
/** @Date : 2017-07-19 19:25:11
* @FileName: vijos 1243 单调性优化 DP 双端队列.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int n, m, cost, l;
int sum[100500][8];
int dp[100500][8]; int main()
{
while(cin >> m >> n >> cost >> l)
{
int x;
for(int i = 1; i <= n; i++)
{
sum[0][i] = 0;
for(int j = 1; j <= m; j++)
{
scanf("%d", &x);
sum[j][i] = sum[j - 1][i] + x;
}
} deque<int >q[8][8];
for(int i = 0; i <= m; i++)
for(int j = 0; j <= n; j++)
dp[i][j] = INF;
for(int j = 0; j <= n; j++)
dp[0][j] = 0;
/*for(int i = 1; i <= n; i++)
for(int k = 1; k <= n; k++)
q[i][k].push_back(0);*/
///////////////////////
for(int i = 0; i <= m; i++)
{
for(int j = 1; j <= n; j++)//删除头不符合条件的
for(int x = 1; x <= n; x++)//from
{
if(j == x)
continue;
while(!q[j][x].empty()
&& i - l > q[j][x].front())
q[j][x].pop_front();
} for(int j = 1; j <= n; j++)//单独考虑j
for(int x = 1; x <= n; x++)//from 从什么方向转移
{
if(j == x)
continue;
int v = 0;
if(!q[j][x].empty())
v = q[j][x].front();
dp[i][j] = min(dp[v][x] - sum[v][j] + sum[i][j] + cost, dp[i][j]);
}
for(int j = 1; j <= n; j++)//删除尾不单调(不最优的)
for(int x = 1; x <= n; x++)//from
{
if(j == x)
continue;
while(!q[j][x].empty()
&& dp[i][x] - sum[i][j] <=
dp[q[j][x].back()][x] - sum[q[j][x].back()][j])
q[j][x].pop_back();
q[j][x].push_back(i);
}
}
int ans = INF;
for(int i = 1; i <= n; i++)
ans = min(ans, dp[m][i]);
printf("%d\n", ans - cost);
}
return 0;
}
vijos 1243 生产产品 DP + 单调队列优化的更多相关文章
- Vijos 1243 生产产品 (单调队列优化的动态规划)
题意:中文题.不说了. 注意一些地方,机器的执行过程是没有顺序的,而且每个机器可以用多次.第一次执行的机器不消耗转移时间K. 用dp[i][j]表示第i个机器完成第j个步骤的最短时间,sum[j][i ...
- Vijos P1243 生产产品 (单调队列优化DP)
题意: 必须严格按顺序执行M个步骤来生产一个产品,每一个步骤都可以在N台机器中的任何一台完成.机器i完成第j个步骤的时间为T[i][j].把半成品从一台机器上搬到另一台机器上也需要一定的时间K.每台机 ...
- vijos P1243 生产产品(单调队列+DP)
P1243生产产品 描述 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产 品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器 ...
- 2018.10.23 vijo1243生产产品(单调队列优化dp)
传送门 这道单调队列真的有点难写啊. 方程感觉挺简单的. f[i][j]f[i][j]f[i][j]表示在第iii个车间结束前jjj次步骤的最小代价. 然后用单调队列毒瘤优化一下就行了. 代码: #i ...
- [poj3017] Cut the Sequence (DP + 单调队列优化 + 平衡树优化)
DP + 单调队列优化 + 平衡树 好题 Description Given an integer sequence { an } of length N, you are to cut the se ...
- 1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)
这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= = 然后,看到这种题,首先必须的就是缩点= = 缩点完之后呢,变成在树上找最长路了= =直接树形dp了 那么那些 ...
- Codeforces 1077F2 Pictures with Kittens (hard version)(DP+单调队列优化)
题目链接:Pictures with Kittens (hard version) 题意:给定n长度的数字序列ai,求从中选出x个满足任意k长度区间都至少有一个被选到的最大和. 题解:数据量5000, ...
- P3084 [USACO13OPEN]照片Photo (dp+单调队列优化)
题目链接:传送门 题目: 题目描述 Farmer John has decided to assemble a panoramic photo of a lineup of his N cows ( ...
- Codeforces 445A Boredom(DP+单调队列优化)
题目链接:http://codeforces.com/problemset/problem/455/A 题目大意:有n个数,每次可以选择删除一个值为x的数,然后值为x-1,x+1的数也都会被删除,你可 ...
随机推荐
- Eclipse/myEclipse 代码提示/自动提示/自动完成设置(转)
一.设置超级自动提示 设置eclipse/myEclipse代码提示可以方便开发者,不用在记住拉杂的单词,只用打出首字母,就会出现提示菜单.如同dreamweaver一样方便. 1.菜单window- ...
- lintcode-496-玩具工厂
496-玩具工厂 工厂模式是一种常见的设计模式.请实现一个玩具工厂 ToyFactory 用来产生不同的玩具类.可以假设只有猫和狗两种玩具. 您在真实的面试中是否遇到过这个题? Yes 样例 ToyF ...
- 【leetcode】59.Spiral Matrix II
Leetcode59 Spiral Matrix II Given an integer n, generate a square matrix filled with elements from 1 ...
- 增加响应header让ajax支持跨域
ajax请求数据步骤 发送请求--->浏览器接受响应--->判断是否是同域下 是的话,就把响应数据返回给ajax.不是的话就提醒禁止跨域请求. 现在可以在响应头重增加 header(&qu ...
- session,cookie
简单: cookie可以由客户端,服务端产生,保存在客户端,客户端可以更改cookie中的内容 session只能在服务端产生,保存在服务端,会产生一个session_id,一个域下,只有一个id,这 ...
- 数组去重复及记录重复个数(以及遍历map的四种方法)
private static void check(String[] array) { // 字符串数组中,含有不重复的字符串有哪些?每一个重复的个数 Map<String,Integer> ...
- dat.gui 上手
dat.gui是款神器产品.一个调试利器.但是用起来很简单很简单 1:引用dat.gui.js. 2:实例化 this.gui = new dat.GUI(); 3:创建可设置一个数据对象.例如v ...
- ONS发布订阅消息
ONS, 全名Open Notification Service, 是阿里基于开源消息中间件RocketMQ的一个云产品. 首先,要申请阿里账号等.本地也可以申请阿里云账号自己调试.此处为公司拥有阿里 ...
- Java线程间怎么实现同步
1.Object#wait(), Object#notify()让两个线程依次执行 /** * 类AlternatePrintDemo.java的实现描述:交替打印 */ class NumberPr ...
- 图解用HTML5的popstate如何玩转浏览器历史记录
一.popstate用来做什么的?简而言之就是HTML5新增的用来控制浏览器历史记录的api. 二.过去如何操纵浏览器历史记录? window.history对象,该对象上包含有length和stat ...