Tensorflow实现各种学习率衰减

觉得有用的话,欢迎一起讨论相互学习~

参考文献

Deeplearning AI Andrew Ng

Tensorflow1.2 API

学习率衰减(learning rate decay)

  • 加快学习算法的一个办法就是随时间慢慢减少学习率,我们将之称为学习率衰减(learning rate decay)

概括

  • 假设你要使用mini-batch梯度下降法,mini-batch数量不大,大概64或者128个样本,但是在迭代过程中会有噪音,下降朝向这里的最小值,但是不会精确的收敛,所以你的算法最后在附近摆动.,并不会真正的收敛.因为你使用的是固定的 \(\alpha\),在不同的mini-batch中有杂音,致使其不能精确的收敛.

  • 但如果能慢慢减少学习率 \(\alpha\) 的话,在初期的时候,你的学习率还比较大,能够学习的很快,但是随着 \(\alpha\) 变小,你的步伐也会变慢变小.所以最后的曲线在最小值附近的一小块区域里摆动.所以慢慢减少 \(\alpha\) 的本质在于在学习初期,你能承受较大的步伐, 但当开始收敛的时候,小一些的学习率能让你的步伐小一些.

细节

  • 一个epoch表示要遍历一次数据,即就算有多个mini-batch,但是一定要遍历所有数据一次,才叫做一个epoch.
  • 学习率 \(\alpha ,其中 \alpha_{0}表示初始学习率, decay-rate是一个新引入的超参数\) :

\[\alpha = \frac{1}{1+decay-rate*epoch-num}*\alpha_{0}
\]

其他学习率是衰减公式

指数衰减

\[\alpha = decay-rate^{epoch-num}*\alpha_{0}
\]

\[\alpha = \frac{k}{\sqrt{epoch-num}}*\alpha_{0}其中k是超参数
\]

\[\alpha = \frac{k}{\sqrt{t}}*\alpha_{0}其中k是超参数,t表示mini-batch的标记数字
\]

Tensorflow实现学习率衰减

自适应学习率衰减

tf.train.exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)

退化学习率,衰减学习率,将指数衰减应用于学习速率。

计算公式:

decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)

# 初始的学习速率是0.1,总的迭代次数是1000次,如果staircase=True,那就表明每decay_steps次计算学习速率变化,更新原始学习速率,
# 如果是False,那就是每一步都更新学习速率。红色表示False,蓝色表示True。
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt learning_rate = 0.1 # 初始学习速率时0.1
decay_rate = 0.96 # 衰减率
global_steps = 1000 # 总的迭代次数
decay_steps = 100 # 衰减次数 global_ = tf.Variable(tf.constant(0))
c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)
d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False) T_C = []
F_D = [] with tf.Session() as sess:
for i in range(global_steps):
T_c = sess.run(c, feed_dict={global_: i})
T_C.append(T_c)
F_d = sess.run(d, feed_dict={global_: i})
F_D.append(F_d) plt.figure(1)
plt.plot(range(global_steps), F_D, 'r-')# "-"表示折线图,r表示红色,b表示蓝色
plt.plot(range(global_steps), T_C, 'b-')
# 关于函数的值的计算0.96^(3/1000)=0.998
plt.show()

反时限学习率衰减

inverse_time_decay(learning_rate, global_step, decay_steps, decay_rate,staircase=False,name=None)

将反时限衰减应用到初始学习率。

计算公式:

decayed_learning_rate = learning_rate / (1 + decay_rate * t)

import tensorflow as tf
import matplotlib.pyplot as plt global_ = tf.Variable(tf.constant(0), trainable=False)
globalstep = 10000 # 全局下降步数
learning_rate = 0.1 # 初始学习率
decaystep = 1000 # 实现衰减的频率
decay_rate = 0.5 # 衰减率 t = tf.train.inverse_time_decay(learning_rate, global_, decaystep, decay_rate, staircase=True)
f = tf.train.inverse_time_decay(learning_rate, global_, decaystep, decay_rate, staircase=False) T = []
F = [] with tf.Session() as sess:
for i in range(globalstep):
t_ = sess.run(t, feed_dict={global_: i})
T.append(t_)
f_ = sess.run(f, feed_dict={global_: i})
F.append(f_) plt.figure(1)
plt.plot(range(globalstep), T, 'r-')
plt.plot(range(globalstep), F, 'b-')
plt.show()

学习率自然指数衰减

def natural_exp_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False, name=None)

将自然指数衰减应用于初始学习速率。

计算公式:

decayed_learning_rate = learning_rate * exp(-decay_rate * global_step)

import tensorflow as tf
import matplotlib.pyplot as plt global_ = tf.Variable(tf.constant(0), trainable=False)
globalstep = 10000 # 全局下降步数
learning_rate = 0.1 # 初始学习率
decaystep = 1000 # 实现衰减的频率
decay_rate = 0.5 # 衰减率 t = tf.train.natural_exp_decay(learning_rate, global_, decaystep, decay_rate, staircase=True)
f = tf.train.natural_exp_decay(learning_rate, global_, decaystep, decay_rate, staircase=False) T = []
F = [] with tf.Session() as sess:
for i in range(globalstep):
t_ = sess.run(t, feed_dict={global_: i})
T.append(t_)
f_ = sess.run(f, feed_dict={global_: i})
F.append(f_) plt.figure(1)
plt.plot(range(globalstep), T, 'r-')
plt.plot(range(globalstep), F, 'b-')
plt.show()

常数分片学习率衰减

piecewise_constant(x, boundaries, values, name=None)

例如前1W轮迭代使用1.0作为学习率,1W轮到1.1W轮使用0.5作为学习率,以后使用0.1作为学习率。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # 当global_取不同的值时learning_rate的变化,所以我们把global_
global_ = tf.Variable(tf.constant(0), trainable=False)
boundaries = [10000, 12000]
values = [1.0, 0.5, 0.1]
learning_rate = tf.train.piecewise_constant(global_, boundaries, values)
global_steps = 20000 T_L = []
with tf.Session() as sess:
for i in range(global_steps):
T_l = sess.run(learning_rate, feed_dict={global_: i})
T_L.append(T_l) plt.figure(1)
plt.plot(range(global_steps), T_L, 'r-')
plt.show()

多项式学习率衰减

特点是确定结束的学习率。

polynomial_decay(learning_rate, global_step, decay_steps,end_learning_rate=0.0001, power=1.0,cycle=False, name=None):

通常观察到,通过仔细选择的变化程度的单调递减的学习率会产生更好的表现模型。此函数将多项式衰减应用于学习率的初始值。

使学习率learning_rate在给定的decay_steps中达到end_learning_rate。它需要一个global_step值来计算衰减的学习速率。你可以传递一个TensorFlow变量,在每个训练步骤中增加global_step = min(global_step, decay_steps)

计算公式:

decayed_learning_rate = (learning_rate - end_learning_rate) *(1 - global_step / decay_steps) ^ (power) + end_learning_rate

如果cycle为True,则使用decay_steps的倍数,第一个大于'global_steps`.ceil表示向上取整.

decay_steps = decay_steps * ceil(global_step / decay_steps)

decayed_learning_rate = (learning_rate - end_learning_rate) *(1 - global_step / decay_steps) ^ (power) + end_learning_rate

Example: decay from 0.1 to 0.01 in 10000 steps using sqrt (i.e. power=0.5):'''
import tensorflow as tf
import matplotlib.pyplot as plt global_ = tf.Variable(tf.constant(0), trainable=False)
starter_learning_rate = 0.1 # 初始学习率
end_learning_rate = 0.01 # 结束学习率
decay_steps = 1000
globalstep = 10000
f = tf.train.polynomial_decay(starter_learning_rate, global_, decay_steps, end_learning_rate, power=0.5, cycle=False)
t = tf.train.polynomial_decay(starter_learning_rate, global_, decay_steps, end_learning_rate, power=0.5, cycle=True)
F = []
T = []
with tf.Session() as sess:
for i in range(globalstep):
f_ = sess.run(f, feed_dict={global_: i})
F.append(f_)
t_ = sess.run(t, feed_dict={global_: i})
T.append(t_) plt.figure(1)
plt.plot(range(globalstep), F, 'r-')
plt.plot(range(globalstep), T, 'b-')
plt.show()

Tensorflow实现学习率衰减的更多相关文章

  1. TensorFlow之DNN(二):全连接神经网络的加速技巧(Xavier初始化、Adam、Batch Norm、学习率衰减与梯度截断)

    在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦) ...

  2. TensorFlow——学习率衰减的使用方法

    在TensorFlow的优化器中, 都要设置学习率.学习率是在精度和速度之间找到一个平衡: 学习率太大,训练的速度会有提升,但是结果的精度不够,而且还可能导致不能收敛出现震荡的情况. 学习率太小,精度 ...

  3. Adam和学习率衰减(learning learning decay)

    目录 梯度下降法更新参数 Adam 更新参数 Adam + 学习率衰减 Adam 衰减的学习率 References 本文先介绍一般的梯度下降法是如何更新参数的,然后介绍 Adam 如何更新参数,以及 ...

  4. 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减

    1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...

  5. 吴恩达深度学习笔记(五) —— 优化算法:Mini-Batch GD、Momentum、RMSprop、Adam、学习率衰减

    主要内容: 一.Mini-Batch Gradient descent 二.Momentum 四.RMSprop 五.Adam 六.优化算法性能比较 七.学习率衰减 一.Mini-Batch Grad ...

  6. Dropout和学习率衰减

         Dropout 在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象.在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上 ...

  7. ubuntu之路——day8.5 学习率衰减learning rate decay

    在mini-batch梯度下降法中,我们曾经说过因为分割了baby batch,所以迭代是有波动而且不能够精确收敛于最小值的 因此如果我们将学习率α逐渐变小,就可以使得在学习率α较大的时候加快模型训练 ...

  8. [深度学习] pytorch学习笔记(3)(visdom可视化、正则化、动量、学习率衰减、BN)

    一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使 ...

  9. 权重衰减(weight decay)与学习率衰减(learning rate decay)

    本文链接:https://blog.csdn.net/program_developer/article/details/80867468“微信公众号” 1. 权重衰减(weight decay)L2 ...

随机推荐

  1. Java访问控制

    转自:菜鸟教程

  2. 本周实验PSP0 过程文档

    2016-03-12 项目总结: 日期\学习时间 听课 编写程序 阅读相关书籍 日总计 周一 110 0 30 140 周二 0 30 30 60 周三 0 40 0 40 周四 110 20 30 ...

  3. JSON.parse与eval

    文章:JSON.parse 与 eval() 对于解析json的问题 json的标准格式:{"name":"jobs"}   名字和值都必须用双引号引起来.

  4. lintcode-488-快乐数

    488-快乐数 写一个算法来判断一个数是不是"快乐数". 一个数是不是快乐是这么定义的:对于一个正整数,每一次将该数替换为他每个位置上的数字的平方和,然后重复这个过程直到这个数变为 ...

  5. 移动平台的meta标签

    这个meta在移动平台上有非常神奇的地方. 1. <meta name="viewport" content="width=device-width; initia ...

  6. vsftpd:非常安全的ftp服务端程序

    主程序:/usr/sbin/vsftpd 主配置文件:/etc/vsftpd/vsftpd.conf CentOS 6  /etc/rc.d/init.d/vsftpd chkconfig vsftp ...

  7. 蜗牛慢慢爬 LeetCode 1.Two Sum [Difficulty: Easy]

    题目 Given an array of integers, return indices of the two numbers such that they add up to a specific ...

  8. 敏捷冲刺Day7

    一. 每日会议 1. 照片 2. 昨日完成工作 3. 今日完成工作 第一阶段的测试 全部队员对各个方面进行深入检查,找出细节问题 4. 工作中遇到的困难 工作中的困难:对自己做出来的产品进行否定.以求 ...

  9. beta-review阶段贡献分分配

    小组名称:飞天小女警 项目名称:礼物挑选小工具 小组成员:沈柏杉(组长).程媛媛.杨钰宁.谭力铭 bera-review阶段各组员的贡献分分配如下: 姓名 团队贡献分 程媛媛 5.8 沈柏杉 6.1 ...

  10. struct和class的联系与区别

    C++支持另一个关键字struct,它也可以定义类类型.struct关键字是从C语言继承过来的. 默认初始访问级别不同: 如果使用class关键字来定义类,那么定义在第一个访问标号前的任何成员都隐式指 ...