Slope One 算法 是一种基于评分的预测算法, 本质上也是一种基于项目的算法。与一般的基于项目的算法不同, 该算法不计算项目之间的相似度, 而是用一种简单的线性回归模型进行预测(可以扩展) 算法易于实现, 计算速度快, 可扩展性好, 同时对数据稀疏性有较好的适应性。
       例如下面表格里有3个用户对4个物品的评分
 
101
102
103
104
UserX 5
3.5
 
 
UserY
2
5
4
2
UserZ
4.5
3.5
1
4

求物品两两之间的差值平均分:

        物品102和101:{(3.5-5)+(5-2)+(3.5-4.5)}/3=0.5/3
      物品103跟101:{(4-2)+(1-4.5)}/2=-1.5/2
      物品104跟101:{(2-2)+(4-4.5)}/2=-0.5/2
      物品103跟102:{(4-5)+(1-3.5)}/2=-3.5/2
      物品104跟102:{(2-5)+(4-3.5)}/2=-2.5/2
      物品104跟103:{(2-4)+(4-1)}/2=1/2
能得到下面表格
 
101
102
103
104
101
 
 
 
 
102
0.17
 
 
 
103
-0.75
-1.75
 
 
104
-0.25
-1.25
0.5
 

OK,现在准备工作已经完成了,然后进行推荐,例如对X用户进行推荐,103和104个预测评分根据101、102的评分来的。

       X预测103评分={(-0.75+5)+(-1.75+3.5)}/2=(4.25+1.75)/2=3
       X预测104评分={(-0.25+5)+(-1.25+3.5)}/2=(4.75+2.25)/2=3.5
       那么给X用户推荐的顺序就是:先推荐104在推荐103
       实战经验:可以看出该算法对评分质量要求非常高,那么如果某一个物品的平均分高的话,那么该物品就非常容易被推荐。
       下面代码是基于Mahout的SlopeOne算法调用:

 import java.io.BufferedReader;

 import java.io.BufferedWriter;

 import java.io.File;

 import java.io.FileNotFoundException;

 import java.io.FileReader;

 import java.io.FileWriter;

 import java.io.IOException;

 import java.util.List;

 import org.apache.commons.cli2.OptionException;

 import org.apache.mahout.cf.taste.common.TasteException;

 import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;

 import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;

 import org.apache.mahout.cf.taste.impl.recommender.CachingRecommender;

 import org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender;

 import org.apache.mahout.cf.taste.model.DataModel;

 import org.apache.mahout.cf.taste.recommender.RecommendedItem;

 public class App 

 {  

     static final String inputFile = "/mnt/new/ml-1m/ratings.dat";

     static final String outputFile = "/mnt/new/ml-1m/ratings.csv";

     public static void main( String[] args ) throws IOException, TasteException, OptionException

     {

         CreateCsvRatingsFile();    

        //创建模型数据源文件      

         File ratingsFile = new File(outputFile);  

         DataModel model = new FileDataModel(ratingsFile);

         // SlopeOne算法

         CachingRecommender cachingRecommender = new CachingRecommender(new SlopeOneRecommender(model));

         // 对所有用户进行推荐

         for (LongPrimitiveIterator it = model.getUserIDs(); it.hasNext();){

             long userId = it.nextLong();     

             // 对单个User进行推荐

             List<RecommendedItem> recommendations = cachingRecommender.recommend(userId, 10);

             // 该用户无推荐结果

             if (recommendations.size() == 0){

                 System.out.print("User ");

                 System.out.print(userId);

                 System.out.println(": no recommendations");

             }                 

             // 打印推荐信息

             for (RecommendedItem recommendedItem : recommendations) {

                 System.out.print("User ");

                 System.out.print(userId);

                 System.out.print(": ");

                 System.out.println(recommendedItem);

             }

         }                

     }

     //读文件前1000行作为模型输入
private static void CreateCsvRatingsFile() throws FileNotFoundException, IOException { BufferedReader br = new BufferedReader(new FileReader(inputFile)); BufferedWriter bw = new BufferedWriter(new FileWriter(outputFile)); String line = null; String line2write = null; String[] temp; int i = 0; while ((line = br.readLine()) != null && i < 1000) { i++; temp = line.split("::"); line2write = temp[0] + "," + temp[1]; bw.write(line2write); bw.newLine(); bw.flush(); } br.close(); bw.close(); } }

参考资料:1,Mahout cookbook;2,http://weibo.com/bicloud 网友写的SlopeOnePPT

SlopeOne推荐算法的更多相关文章

  1. java和python实现一个加权SlopeOne推荐算法

    一.加权SlopeOne算法公式: (1).求得所有item之间的评分偏差 上式中分子部分为项目j与项目i的偏差和,分母部分为所有同时对项目j与项目i评分的用户数 (2).加权预测评分 项目j与项目i ...

  2. Mahout推荐算法API详解

    转载自:http://blog.fens.me/mahout-recommendation-api/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...

  3. Mahout推荐算法基础

    转载自(http://www.geek521.com/?p=1423) Mahout推荐算法分为以下几大类 GenericUserBasedRecommender 算法: 1.基于用户的相似度 2.相 ...

  4. 转】Mahout推荐算法API详解

    原博文出自于: http://blog.fens.me/mahout-recommendation-api/ 感谢! Posted: Oct 21, 2013 Tags: itemCFknnMahou ...

  5. Mahout推荐算法之SlopOne

    Mahout推荐算法之SlopOne 一.       算法原理 有别于基于用户的协同过滤和基于item的协同过滤,SlopeOne采用简单的线性模型估计用户对item的评分.如下图,估计UserB对 ...

  6. [转]Mahout推荐算法API详解

    Mahout推荐算法API详解 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeepe ...

  7. 推荐算法之 slope one 算法

    1.示例引入 多个吃货在某美团的某家饭馆点餐,如下两道菜: 可乐鸡翅: 红烧肉: 顾客吃过后,会有相关的星级评分.假设评分如下: 评分 可乐鸡翅 红烧肉 小明 4 5 小红 4 3 小伟 2 3 小芳 ...

  8. 从分类,排序,top-k多个方面对推荐算法稳定性的评价

    介绍 论文名: "classification, ranking, and top-k stability of recommendation algorithms". 本文讲述比 ...

  9. Mahout推荐算法API具体解释【一起学Mahout】

    阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能 ...

随机推荐

  1. ios大文件存储

    I am using Erica Sadun's method of Asynchronous Downloads (link here for the project file: download) ...

  2. Git之Github使用(一):Push代码到Github

    Git之Github使用(一):Push代码到Github 热度 2已有 58 次阅读2016-8-26 17:56 |个人分类:常见问题|系统分类:移动开发| 互联网, commit, status ...

  3. wpa破解学习

    TENDA  159031106A iPhone 192.168.0.11 90:27:E4:53:49:D6 18:58:52 PC-201211262044 192.168.0.12 00:F1: ...

  4. 课程设计之"网络考试系统"(php、Extjs)

    1.TestSystem大概结构框图 2.数据库设计(11张表) 数据库名称:db_testsystem 数据库表: tb_admin 记录题库管理员帐户信息 代码 tb_allcontent 记录随 ...

  5. linux代理设置

    http_proxy:http协议使用代理服务器地址:https_proxy:https协议使用安全代理地址:ftp_proxy:ftp协议使用代理服务器地址:user:代理使用的用户名:passwo ...

  6. (转)python装饰器二

    Python装饰器进阶之二 保存被装饰方法的元数据 什么是方法的元数据 举个栗子 def hello(): print('Hello, World.') print(dir(hello)) 结果如下: ...

  7. python+tesseract验证码识别的一点小心得

    由于公司需要,最近开始学习验证码的识别 我选用的是tesseract-ocr进行识别,据说以前是惠普公司开发的排名前三的,现在开源了.到目前为止已经出到3.0.2了 当然了,前期我们还是需要对验证码进 ...

  8. An internal error occurred Exception caught during execution of commit command

    在工程目录下找到 .git 文件夹 ,找到里面的 index.lock 文件,删掉再commit

  9. iWatch报错: Missing com.apple.developer.healthkit entitlement

    今天开发iWatch项目,报错: Optional (Error "Missing come.apple.developer.healthkit entitlement.") Us ...

  10. 全国车辆违章查询API文档及demo

    简介 聚合数据全国车辆违章API,目前已经支持300个左右的城市违章查询,已连接上万个APP.方便有车一族随时了解自己是否有过交通违章,避免因遗忘或逾期处理违章罚单而造成的不必要损失. API参考文档 ...