LOJ114 k大异或和
(vjudge和hdu也有但是我觉得LOJ好看!而且限制少!)
不过本题描述有误,应该是k小。
首先我们需要对线性基进行改造。需要把每一位改造成为,包含最高位的能异或出来的最小的数。
为啥呢?因为如果不满足这个条件的话,那么在之后的异或过程中,大的数反而会被小的数异或的更小。
满足了上述性质之后,我们就能知道,首先高位的1一定比低位的1更能使异或和变大,而低位的1一定能使异或和变大。那么我们先把线性基中所有元素压入栈,之后把k二进制拆分,异或上对应的位置的值即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define rep(i,a,n) for(register int i = a;i <= n;i++)
#define per(i,n,a) for(register int i = n;i >= a;i--)
#define enter putchar('\n')
#define pr pair<int,int>
#define mp make_pair
#define fi first
#define sc second
#define I inline
using namespace std;
typedef long long ll;
const int M = 20005;
const int N = 10000005;
ll read()
{
ll ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >='0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
}
ll p[65],k,x,cnt,f[65];
int T,n,q;
void insert(ll x)
{
per(i,63,0)
{
if(!((x>>i) & 1)) continue;
if(!p[i]) {p[i] = x;break;}
x ^= p[i];
}
}
void rebuild()
{
rep(i,0,63)
{
per(j,i-1,0) if((p[i] ^ p[j]) < p[i]) p[i] ^= p[j];
if(p[i]) f[cnt++] = p[i];
}
}
ll calc(ll k)
{
ll cur = 0;
rep(i,0,cnt-1) if(k & (1ll << i)) cur ^= f[i];
return cur;
}
int main()
{
scanf("%d",&n);
rep(i,1,n) scanf("%lld",&x),insert(x);
rebuild();
scanf("%d",&q);
while(q--)
{
scanf("%lld",&k);
if(cnt != n) k--;
if(k >= (1ll<<cnt)) printf("-1\n");
else printf("%lld\n",calc(k));
}
return 0;
}
LOJ114 k大异或和的更多相关文章
- 【线性基】51nod1312 最大异或和&LOJ114 k大异或和
1312 最大异或和 题目来源: TopCoder 基准时间限制:1 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 有一个正整数数组S,S中有N个元素,这些元素分别是S[0] ...
- Loj 114 k大异或和
Loj 114 k大异或和 构造线性基时有所变化.试图构造一个线性基,使得从高到低位走,异或上一个非 \(0\) 的数,总能变大. 构造时让任意两个 \(bas\) 上有值的 \(i,j\) ,满足 ...
- [LOJ#114]k 大异或和
[LOJ#114]k 大异或和 试题描述 这是一道模板题. 给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 T⊆S,使得集合 T 在 S 的所有非空子集的不同的异或和中,其异或和 ...
- LibreOJ #114. k 大异或和
二次联通门 : LibreOJ #114. k 大异或和 /* LibreOJ #114. k 大异或和 WA了很多遍 为什么呢... 一开始读入原数的时候写的是for(;N--;) 而重新构造线性基 ...
- 第k大异或值
这道题与2018年十二省联考中的异或粽子很相像,可以算作一个简易版: 因为这不需要可持久化: 也就是说求任意两个数异或起来的第k大值: 首先把所有数放进trie里. 然后二分答案,枚举每个数,相应地在 ...
- LOJ114 k大(xiao)异或和(线性基)
构造线性基后将其消至对任意位至多只有一个元素该位为1.于是就可以贪心了,将k拆成二进制就好.注意check一下是否能异或出0. #include<iostream> #include< ...
- 【loj114】k大异或和 线性基+特判
题目描述 给由 $n$ 个数组成的一个可重集 $S$ ,每次给定一个数 $k$ ,求一个集合 $T⊆S$ ,使得集合 $T$ 在 $S$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...
- LOJ.114.K大异或和(线性基)
题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...
- hdu 3949 第k大异或组合
题意: 给你一些数,其中任选一些数(大于等于一个),那么他们有一个异或和. 求所有这样的异或和的第k小. 我们可以将每一位看成一维,然后就是给我们n个60维的向量,求它们线性组合后得到的向量空间中,第 ...
随机推荐
- fast-cgi & php-fpm 等的理解
原文地址:https://segmentfault.com/q/1010000000256516 网上有的说,fastcgi是一个协议,php-fpm实现了这个协议: 有的说,php-fpm是fast ...
- 理解Neural Style
paperA Neural Algorithm of Artistic Style 在艺术领域,尤其是绘画,艺术家们通过创造不同的内容与风格,并相互交融影响来创立独立的视觉体验.如果给定两张图像,现在 ...
- 修改 百度地图 infowindow 默认样式
1.百度 api 没有 提供可以修改 infowindow 默认样式的 方法. 如需修改,需要 自定义 替换 默认样式. demo.html <!DOCTYPE html> <htm ...
- C++错误——”无法启动程序”…\xxx.exe” 系统找不到指定的文件”
背景 在VS2010环境下,升级了一个用C++编写的程序,编译生成成功,但是,不能在VS中直接运行(可以通过打开debug文件目录的exe应用程序运行),提示以下错误:”无法启动程序”…\xxx.ex ...
- Tessellation (曲面细分) Displacement Mapping (贴图置换)
DirectX 11 Tessellation (曲面细分)-什么是 Tessellation (曲面细分) ? 它为什么可以起到如此关键的数据? 随着近期人们对 DirectX 11 的议论纷纷,你 ...
- Python生成8位随机字符串的一些方法
#第一种方法 import random import string seed = "1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOP ...
- EC知识总结ITE5570
以笔记本上的EC ITE5570进行讲解 ITE EC代码解析 1.一简介 EC(Embed Controller,嵌入式控制器)是一个16位单片机,它内部本身也有一定容量的Flash来存储EC的代 ...
- idea常用的快捷命令
main方法: psvm System.out.println(): sout
- Jquery源码分析-整体结构
最近在学习Jquery的最新的源码,Jquery-3.3.1版本.网上有很多对jquery解析的文章.但是我还是要自己去尝试着看一篇jquery的源码.本系列博客用来记录其中的过程,并同大家分享.本次 ...
- Xcode 6 的新增特性
本文转载至 http://www.cocoachina.com/ios/20140823/9441.html (via:苹果开发者中心) Xcode 6 引入了设计和构建软件的崭新方式.Swift ...