Tarjan的学习笔记 求割边求割点
博主图论比较弱,搜了模版也不会用。。。
所以决心学习下tarjan算法。
割点和割边的概念不在赘述,tarjan能在线性时间复杂度内求出割边。
重要的概念:时间戟,就是一个全局变量clock记录访问结点的时间。一个无向图dfs会形成一个森林,当图只有一个连通分量时,就只有一棵树。
由于在无向图中,除了树边,其他都是反向边。可以画个图感受一下,可以反证的,如果有其他类型的边,那么dfs先沿着那些边跑图的,那么那些边就不存在。
如果结点是树根,那么它是割点的充要条件就是它有两个子结点。
定理
对于其他结点,如果他的子结点的反向边没有指向它的祖先的,那么它就是割点。证明很明显,因为无向图是没有横跨子树的边的。(对树根不成立哦~)
具体判断的时候借助时间戟,定义low(u)为u和其后代所能返回最早祖先的的dfn值,那么定理就可以等价的转化为low(v)>=pre(u)。而且如果v的后代只能返回自己,那么删除(u,v)的一条边就可以让图分连通,那么就找到了割边(桥)。
伪代码
int dfs(int u,int fa) 返回u的low值, fa是判断是不是树边的二次访问
{
记录时间戟并初始化u的low值
跑图{
如果子节点v没访问过{
dfs(v)并返回后代low值
用后代low值更新u的low值
如果 后代的low值>=pre //根据要求的是割边还是割点替换判断条件
那么u是割点 //用数组记录,因为一个割点,条件可能不只成立一次
}否则 如果是反向边 // 一.要满足v的时间戟小于u的,二.v不是u的父节点(是无向图的边的二次访问)
{
用反向边更新u的low值
}
}
用数组记录low u
返回 low u
}
对于树根可以特判,可以通过对代码的小改动来实现,做法是记录子结点数量child,初始调用时fa赋值-1,加一个判断fa<0且child == 1时iscut(u) = false
这个不能跑重边
对于有重边的图可以采用以下技巧
如果是用前向星存正反两条边是相邻并且奇偶性一定是不一样的,那么可以利用异或的开关性,来判断是不是树边
if
(i==(id^1))
continue
;
//不从i对应的边到父节点
void tarjan(int u,int fa)
{
dfn[u] = low[u] = ++clock;
for(int i = head[i]; ~i ; i = nxt[i]){
int v = to[i];
if(!dfn[v]){
tarjan(v,u);
low[u] = min(low[u],low[v]);
if(low[v] > dfn[u]){
ans = min(ans,wei[i])
}
}else if(v != fa) {
low[u] = min(low[u],dfn[v]);
}
}
}
如果从树根出发的话,那么有两个以上的结点,反而不是割边。(具体看想要连通哪里)
Tarjan的学习笔记 求割边求割点的更多相关文章
- Tarjan/2-SAT学习笔记
Tarjan/2-SAT Tags:图论 作业部落 评论地址 Tarjan 用来求割边或者割点,求点双联通分量或者边双联通分量 点双联通分量:两个点之间有两条点不相交的路径 边双联通分量:两个点之间有 ...
- $tarjan$简要学习笔记
$QwQ$因为$gql$的$tarjan$一直很差所以一直想着要写个学习笔记,,,咕了$inf$天之后终于还是写了嘻嘻. 首先说下几个重要数组的基本定义. $dfn$太简单了不说$QwQ$ 但是因为有 ...
- Tarjan算法 学习笔记
前排提示:先学习拓扑排序,再学习Tarjan有奇效. -------------------------- Tarjan算法一般用于有向图里强连通分量的缩点. 强连通分量:有向图里能够互相到达的点的集 ...
- [学习笔记] 树上倍增求LCA
倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...
- 强连通分量(Korasaju & Tarjan)学习笔记
好久以前学过的东西...现在已经全忘了 很多图论问题需要用到强连通分量,还是很有必要重新学一遍的 强连通分量(Strongly Connected Component / SCC) 指在一个有向图中, ...
- [学习笔记]tarjan求割点
都口胡了求割边,就顺便口胡求割点好了QAQ 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访问,并在回溯后更新 2.如果某个邻接点已被访问过,则更新 对于当前 ...
- [学习笔记]tarjan求割边
上午打模拟赛的时候想出了第三题题解,可是我不会求割边只能暴力判割边了QAQ 所以,本文介绍求割边(又称桥). 的定义同求有向图强连通分量. 枚举当前点的所有邻接点: 1.如果某个邻接点未被访问过,则访 ...
- [学习笔记] Tarjan算法求桥和割点
在之前的博客中我们已经介绍了如何用Tarjan算法求有向图中的强连通分量,而今天我们要谈的Tarjan求桥.割点,也是和上篇有博客有类似之处的. 关于桥和割点: 桥:在一个有向图中,如果删去一条边,而 ...
- tarjan求割边割点
tarjan求割边割点 内容及代码来自http://m.blog.csdn.net/article/details?id=51984469 割边:在连通图中,删除了连通图的某条边后,图不再连通.这样的 ...
随机推荐
- Jquery.ajax 详细解释 通过Http请求加载远程数据
首先请看一个Jquery.ajax的例子 $.ajax({ type: "GET", url: "/api/SearchApi/GetResults", dat ...
- UVa 10801 Lift Hopping (Dijkstra)
题意:有一栋100层的大楼(标号为0~99),里面有n个电梯(不超过5个),以及要到达的层数(aid),然后是每个电梯走一层所需的时间, 再n行就是对应每个电梯可以到达的层数,数量不定.然后每装换一次 ...
- Oracle(1)
PL/SQL -- 表示注释 ||''|| 拼接字符串 别名 null值和所有数值计算结果都为null 空置值转换函数: nvl(列,所要转换的数) in 相当于用 or 链接. not in 相当于 ...
- FZU - 2214 Knapsack problem 01背包逆思维
Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...
- Vue实现一个MarkDown编辑器
Vue实现一个markdown编辑器 前段时间做项目的时候,需要一个Markdown编辑器,在网上找了一些开源的实现,但是都不满足需求 说实话,这些开源项目也很难满足需求公司项目的需求,与其实现一个大 ...
- uoj#348/洛谷P4221 [WC2018]州区划分(FWT)
传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...
- maven分层架构搭建
1.准备工作: 1.创建数据源 CREATE TABLE `users` ( `id` int(10) NOT NULL AUTO_INCREMENT, `name` varchar(20) DEFA ...
- JS高级学习历程-5
[闭包] 定义:闭包就是一个函数 条件:一个函数去嵌套另外一个函数,里边的函数就是闭包 function f1(){ function f2(){ } } 特点:闭包函数有权访问父级环境的变量信息.
- HDU - 3966-Aragorn' Story(树链剖分+线段树)
链接:https://vjudge.net/problem/HDU-3966 题意: Our protagonist is the handsome human prince Aragorn come ...
- NET Core 2.0使用Cookie认证实现SSO单点登录
NET Core 2.0使用Cookie认证实现SSO单点登录 之前写了一个使用ASP.NET MVC实现SSO登录的Demo,https://github.com/bidianqing/SSO.Sa ...