noip2017集训测试赛(四)Problem A: fibonacci
题目大意
给你一个序列\(a_1, a_2, ..., a_n\). 我们令函数\(f(n)\)表示斐波那契数列第\(n\)项的值. 总共\(m\)个操作, 分为以下两种:
- 将\(x \in [L, R]\)中的所有\(a_x\)加上一个数\(k\);
- 询问\(\sum_{x \in [L, R]}f(a_x)\)
\(n \le 10^5\)
\(m \le 10^5\)
Solution
我们靠考虑斐波那契数列的转移矩阵:
\]
同时我们发现若干个斐波那契数之和也满足这个关系.
因此我们用线段树维护每个区间的\(\sum_{L \le i \le R} f(a_i)\)以及\(\sum_{L \le i \le R} f(a_{i - 1})\), 区间修改查询即可.
注意作为常数优化, 我们要预处理出转移矩阵的\(2^n\)次幂. 否则会TLE.
话说拿这种小技巧, 把正确复杂度的代码卡到30分, 是不是也太丧心病狂了!!!
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
namespace Zeonfai
{
inline long long getInt()
{
long long a = 0, sgn = 1; char c;
while(! isdigit(c = getchar())) if(c == '0') sgn *= -1;
while(isdigit(c)) a = a * 10 + c - '0', c = getchar();
return a * sgn;
}
}
const long long N = (long long)1e5, MOD = (long long)1e9 + 7;
long long n;
struct matrix
{
long long a[2][2];
inline matrix operator *(const matrix &A)
{
matrix res; memset(res.a, 0, sizeof(res.a));
for(long long i = 0; i < 2; ++ i) for(long long j = 0; j < 2; ++ j) for(long long k = 0; k < 2; ++ k)
res.a[i][j] = (res.a[i][j] + (long long)a[i][k] * A.a[k][j] % MOD) % MOD;
return res;
}
}trans, ptt[64];
inline matrix power(long long x)
{
matrix res; memset(res.a, 0, sizeof(res.a)); res.a[0][0] = res.a[1][1] = 1;
if(x < 0) return res;
long long p = 0;
for(; x; x >>= 1, ++ p)
if(x & 1) res = res * ptt[p];
return res;
}
struct segmentTree
{
struct node
{
long long cur, lst;
long long tg; // 注意到tg的值叠加后可能超过Long long
inline node() {cur = 0; lst = 1; tg = 0;}
}nd[N << 2];
inline void pushDown(long long _u)
{
long long x = nd[_u].tg; long long u = _u << 1;
matrix res = power(x);
long long a = ((long long)nd[u].lst * res.a[0][0] % MOD + (long long)nd[u].cur * res.a[1][0] % MOD) % MOD,
b = ((long long)nd[u].lst * res.a[0][1] % MOD + (long long)nd[u].cur * res.a[1][1] % MOD) % MOD;
nd[u].lst = a; nd[u].cur = b;
nd[u].tg += x;
u = _u << 1 | 1;
a = ((long long)nd[u].lst * res.a[0][0] % MOD + (long long)nd[u].cur * res.a[1][0] % MOD) % MOD;
b = ((long long)nd[u].lst * res.a[0][1] % MOD + (long long)nd[u].cur * res.a[1][1] % MOD) % MOD;
nd[u].lst = a; nd[u].cur = b;
nd[u].tg += x;
nd[_u].tg = 0;
}
void modify(long long u, long long curL, long long curR, long long L, long long R, long long x)
{
if(curL >= L && curR <= R)
{
nd[u].tg += x;
matrix res = power(x);
long long a = ((long long)nd[u].lst * res.a[0][0] % MOD + (long long)nd[u].cur * res.a[1][0] % MOD) % MOD,
b = ((long long)nd[u].lst * res.a[0][1] % MOD + (long long)nd[u].cur * res.a[1][1] % MOD) % MOD;
nd[u].lst = a; nd[u].cur = b;
return;
}
pushDown(u);
long long mid = curL + curR >> 1;
if(L <= mid) modify(u << 1, curL, mid, L, R, x);
if(R > mid) modify(u << 1 | 1, mid + 1, curR, L, R, x);
nd[u].cur = (nd[u << 1].cur + nd[u << 1 | 1].cur) % MOD;
nd[u].lst = (nd[u << 1].lst + nd[u << 1 | 1].lst) % MOD;
}
inline void modify(long long L, long long R, long long x) {modify(1, 1, n, L, R, x);}
long long query(long long u, long long curL, long long curR, long long L, long long R)
{
if(curL >= L && curR <= R) return nd[u].cur;
pushDown(u);
long long mid = curL + curR >> 1, res = 0;
if(L <= mid) res = query(u << 1, curL, mid, L, R);
if(R > mid) res = (res + query(u << 1 | 1, mid + 1, curR, L, R)) % MOD;
return res;
}
inline long long query(long long L, long long R) {return query(1, 1, n, L, R);}
}seg;
int main()
{
#ifndef ONLINE_JUDGE
freopen("fibonacci.in", "r", stdin);
freopen("_fibonacci.out", "w", stdout);
#endif
using namespace Zeonfai;
trans.a[0][0] = 0; trans.a[0][1] = trans.a[1][0] = trans.a[1][1] = 1;
ptt[0] = trans;
for(long long i = 1; i < 64; ++ i) ptt[i] = ptt[i - 1] * ptt[i - 1];
n = getInt(); long long m = getInt();
for(long long i = 1; i <= n; ++ i) seg.modify(i, i, getInt());
for(long long i = 0; i < m; ++ i)
{
long long opt = getInt(), L = getInt(), R = getInt();
if(opt == 1)
{
long long x = getInt();
seg.modify(L, R, x);
}
else if(opt == 2) printf("%d\n", seg.query(L, R));
}
}
noip2017集训测试赛(四)Problem A: fibonacci的更多相关文章
- noip2017集训测试赛(三) Problem B: mex [补档]
Description 给你一个无限长的数组,初始的时候都为0,有3种操作: 操作1是把给定区间[l,r][l,r] 设为1, 操作2是把给定区间[l,r][l,r] 设为0, 操作3把给定区间[l, ...
- noip2017集训测试赛(十一)Problem C: 循环移位
题面 Description 给定一个字符串 ss .现在问你有多少个本质不同的 ss 的子串 t=t1t2⋯tm(m>0)t=t1t2⋯tm(m>0) 使得将 tt 循环左移一位后变成的 ...
- noip2017集训测试赛(六)Problem A: 炮艇大赛之正式赛
题目描述 给定一个长度为\(L \le 10^9\)的环形赛道, \(n \le 10^5\)个人在上面赛艇. 每个人的速度都不相同, 假如为正则顺时针走, 否则逆时针走. 当两个人相遇时, 他们就会 ...
- noip2017集训测试赛(三)Problem C: MST
题面 Description 给定一个n个点m条边的连通图,保证没有自环和重边.对于每条边求出,在其他边权值不变的情况下,它能取的最大权值,使得这条边在连通图的所有最小生成树上.假如最大权值为无限大, ...
- noip2019集训测试赛(二十一)Problem B: 红蓝树
noip2019集训测试赛(二十一)Problem B: 红蓝树 Description 有一棵N个点,顶点标号为1到N的树.N−1条边中的第i条边连接顶点ai和bi.每条边在初始时被染成蓝色.高桥君 ...
- 2016集训测试赛(二十四)Problem B: Prz
Solution 这道题有两个关键点: 如何找到以原串某一个位置为结尾的某个子序列的最晚出现位置 如何找到原串中某个位置之前的所有数字的最晚出现位置中的最大值 第一个关键点: 我们注意到每个数字在\( ...
- 2016集训测试赛(二十四)Problem C: 棋盘控制
Solution 场上的想法(显然是错的)是这样的: 我们假设棋子是一个一个地放置的, 考虑在放置棋子的过程中可能出现哪些状态. 我们令有序整数对\((i, j)\)表示总共控制了\(i\)行\(j\ ...
- 2016北京集训测试赛(十四)Problem B: 股神小D
Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大 ...
- 2016北京集训测试赛(十四)Problem A: 股神小L
Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...
随机推荐
- Spring---浅谈IOC
概念 IOC(Inversion of Control 控制反转)是spring的核心,贯穿始终.所谓IOC,对于spring框架来说,就是由spring来负责控制对象的生命周期和对象间的关系. 传统 ...
- mysql 分类
一.系统变量 说明:变量由系统提供,不用自定义 语法: 1.查看系统变量 show[global | session]varisables like ‘ ’:如果没有显示声明global 还是sess ...
- 03017_ajax
1.Ajax概述 (1)什么是同步,什么是异步? ①同步现象:客户端发送请求到服务器端,当服务器返回响应之前,客户端都处于等待卡死状态: ②异步现象:客户端发送请求到服务器端,无论服务器是否返回响应, ...
- luogu2093 [国家集训队]JZPFAR
题面不符?-- #include <algorithm> #include <iostream> #include <cstdio> using namespace ...
- IOS开发学习笔记035-UIScrollView-自动滚动
让图片自动滚动的话,需要使使用定时器,循环计算当前页的页码.并且在拖动图片时停止计时器,停止拖动时启动计时器. 定时器 方法1: performSelector [self performSelect ...
- Mac 如何删除应用、软件
首先需要跟刚接触Mac的小白分享一下卸载软件常用的两种方法: 1.点击Finder(访达)—应用程序—选择所要删除的软件—拖拽到右下方的废纸篓或者单击右键选择“移除到废纸篓”. 2.打开Launchp ...
- PHP简单登录退出代码
PHP简单登录退出代码 登录页面login.html 负责收集用户填写的登录信息. <html> <head> <title></title> < ...
- Unity开发VR——Oculus Rif_将Oculus接入Unity
该文档基于 Unity2018.3.12f1 1. 搭建简单场景 2. 设置,选择 Edit - Project Setting(若已经勾选,就去掉在勾选一次) 完成该步骤之后,可以带上Oculus头 ...
- 使用CoreLocation进行定位(Swift版)
在应用开发中,很多情况需要我们获取到当前的位置和高度信息,方便搜索周边,查看周边相同应用等,一切与定位有关的都得使用CoreLocation库,而且,系统是不允许第三发定位的,当然可以使用第三方对其封 ...
- JavaScript简明教程之Node.js
Node.js是目前非常火热的技术,但是它的诞生经历却很奇特. 众所周知,在Netscape设计出JavaScript后的短短几个月,JavaScript事实上已经是前端开发的唯一标准. 后来,微软通 ...