[bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $
解题关键:
$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } = \sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {\frac{{i*j}}{{\gcd (i,j)}}} } $
枚举gcd,上式化为:
$\sum\limits_{d = 1}^{\min (n,m)} {d\sum\limits_{\begin{array}{*{20}{c}}
{\gcd (i,j) = = 1}\\
{1 < = i < = n/d}\\
{1 < = j < = m/d}
\end{array}} {i*j} } $
令
$f(n,m,k) = \sum\limits_{\begin{array}{*{20}{c}}
{\gcd (i,j) = = k}\\
{1 < = i < = n}\\
{1 < = j < = m}
\end{array}} {i*j} $
由于
$sum(n,m) = \sum\limits_{\begin{array}{*{20}{c}}
{1 < = i < = n}\\
{1 < = j < = m}
\end{array}} {i*j} = \frac{{n(n + 1)}}{2}\frac{{m(m + 1)}}{2}$
$\begin{array}{l}
F(n,m,k) = \sum\limits_{k|d} {f(n,m,d) = \sum\limits_{\begin{array}{*{20}{c}}
{1 < = i < = n}\\
{1 < = j < = m}\\
{k|\gcd (i,j)}
\end{array}} {i*j} = {k^2}sum(\left\lfloor {\frac{n}{k}} \right\rfloor ,\left\lfloor {\frac{m}{k}} \right\rfloor )} \\
f(n,m,k) = \sum\limits_{k|d} {u(\frac{d}{k})F(n,m,d)}
\end{array}$
而此题中,$k==1$,
则,
$\begin{array}{l}
f(n,m,1) = \sum\limits_{d = 1}^{\min (n,m)} {u(d)F(n,m,d)} \\
= \sum\limits_{d = 1}^{\min (n,m)} {u(d){d^2}sum(\left\lfloor {\frac{n}{d}} \right\rfloor ,\left\lfloor {\frac{m}{d}} \right\rfloor )} \\
ans = \sum\limits_{d = 1}^{\min (n,m)} {d*f(\left\lfloor {\frac{n}{d}} \right\rfloor ,\left\lfloor {\frac{m}{d}} \right\rfloor ,1)}
\end{array}$
求解ans和$f$函数复杂度都是$O(\sqrt n )$,所以最终复杂度为$O(n)$。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<iostream>
#define Sum(x,y) (x*(x+1)/2%mod*(y*(y+1)/2%mod)%mod)
using namespace std;
typedef long long ll;
const ll mod=;
const ll maxn=+;
ll n,m;
bool vis[maxn];
ll prime[maxn],mu[maxn],sum1[maxn];
void init_mu(ll n){
ll cnt=;
mu[]=;
for(ll i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(ll j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==){mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
sum1[]=;
for(ll i=;i<n;i++) sum1[i]=(sum1[i-]+1ll*mu[i]*i*i)%mod;
}
ll calf(ll n,ll m){
ll ans=,pos,len=min(n,m);
for(ll i=;i<=len;i=pos+){
pos=min(n/(n/i),m/(m/i));
//ans+=(sum1[pos]-sum1[i-1])%mod*((n/i)*((n/i)+1)/2%mod*(((m/i)+1)*(m/i)/2%mod)%mod);
ans+=(sum1[pos]-sum1[i-])%mod*Sum(n/i,m/i)%mod;//最好用函数写出
ans%=mod; }
return ans;
}
ll calres(ll n,ll m){
ll ans=,pos,len=min(n,m);
for(ll i=;i<=len;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=(i+pos)*(pos-i+)/%mod*calf(n/i,m/i)%mod;
ans%=mod;
}
return (ans%mod+mod)%mod;
} int main(){
scanf("%lld%lld",&n,&m);
init_mu(min(n,m)+);
printf("%lld\n",calres(n,m));
return ;
}
[bzoj2154]Crash的数字表格(mobius反演)的更多相关文章
- bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\) 题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{g ...
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 【莫比乌斯反演】BZOJ2154 Crash的数字表格
Description 求sigma lcm(x,y),x<=n,y<=m.n,m<=1e7. Solution lcm没有什么直接做的好方法,用lcm=x*y/gcd转成gcd来做 ...
- 莫比乌斯反演套路三、四--BZOJ2154: Crash的数字表格 && BZOJ2693: jzptab
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要 ...
随机推荐
- C++刷题——2736: 指针练习--输出最大值
Description 採用指针法,输出10个整型数中的最大值和最小值 Input 10个整数 Output 最大值和最小值 Sample Input 2 6 3 8 1 5 7 0 4 9 Samp ...
- String知识点
- 【BZOJ3295】[Cqoi2011]动态逆序对 cdq分治
[BZOJ3295][Cqoi2011]动态逆序对 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依 ...
- EasyNVR RTSP转RTMP-HLS流媒体服务器前端构建之:内部搜索功能的实现
上一篇介绍了处理接口获取的数据,本篇将介绍如何在接收到的数据中搜索出自己符合条件的数据: 为了页面的美观,我们往往会以分页的形式来进行数据的展示.但是,当需要展示出来的数据太多的时候,我们很难迅速的找 ...
- 我的Java开发学习之旅------>Java使用ObjectOutputStream和ObjectInputStream序列号对象报java.io.EOFException异常的解决方法
今天用ObjectOutputStream和ObjectInputStream进行对象序列化话操作的时候,报了java.io.EOFException异常. 异常代码如下: java.io.EOFEx ...
- python数据分析之:数据加载,存储与文件格式
前面介绍了numpy和pandas的数据计算功能.但是这些数据都是我们自己手动输入构造的.如果不能将数据自动导入到python中,那么这些计算也没有什么意义.这一章将介绍数据如何加载以及存储. 首先来 ...
- Java for LeetCode 096 Unique Binary Search Trees
Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...
- curl下载安装
curl下载地址 https://curl.haxx.se/download.html 选择windows generic 下的 下载安装 安装完后解压配置系统环境变量 CURL_HOME ...
- flask的请求上下文源码解读
一.flask请求上下文源码解读 通过上篇源码分析( ---Flask中的CBV和上下文管理--- ),我们知道了有请求发来的时候就执行了app(Flask的实例化对象)的__call__方法,而__ ...
- 认识与入门 Markdown
Markdown 是一种轻量级的「标记语言」,它的优点很多,目前也被越来越多的写作爱好者,撰稿者广泛使用.看到这里请不要被「标记」.「语言」所迷惑,Markdown 的语法十分简单.常用的标记符号也不 ...