Description

The advice to "buy low" is half the formula to success in the bovine stock market.To be considered a great investor you must also follow this problems' advice:

                    "Buy low; buy lower"

Each time you buy a stock, you must purchase it at a lower price than the previous time you bought it. The more times you buy at a lower price than before, the better! Your goal is to see how many times you can continue purchasing at ever lower prices. 



You will be given the daily selling prices of a stock (positive 16-bit integers) over a period of time. You can choose to buy stock on any of the days. Each time you choose to buy, the price must be strictly lower than the previous time you bought stock. Write
a program which identifies which days you should buy stock in order to maximize the number of times you buy. 



Here is a list of stock prices:

 Day   1  2  3  4  5  6  7  8  9 10 11 12

Price 68 69 54 64 68 64 70 67 78 62 98 87

The best investor (by this problem, anyway) can buy at most four times if each purchase is lower then the previous purchase. One four day sequence (there might be others) of acceptable buys is:

Day    2  5  6 10

Price 69 68 64 62

Input

* Line 1: N (1 <= N <= 5000), the number of days for which stock prices are given 



* Lines 2..etc: A series of N space-separated integers, ten per line except the final line which might have fewer integers. 

Output

Two integers on a single line: 

* The length of the longest sequence of decreasing prices 

* The number of sequences that have this length (guaranteed to fit in 31 bits) 



In counting the number of solutions, two potential solutions are considered the same (and would only count as one solution) if they repeat the same string of decreasing prices, that is, if they "look the same" when the successive prices are compared. Thus,
two different sequence of "buy" days could produce the same string of decreasing prices and be counted as only a single solution. 

Sample Input

12
68 69 54 64 68 64 70 67 78 62
98 87

Sample Output

4 2

Source

求递减子序列的题目,只是本题多了一个要求。须要统计这种最长递减子序列的个数,而且须要去掉反复的子序列。

思路就是须要统计当前下标为结束的时候的最长子序列,然后求这个子序列的数。还须要和前面一样的子序列去重。

具体凝视的代码:

#include <stdio.h>
#include <vector>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <string>
#include <limits.h>
#include <stack>
#include <queue>
#include <set>
#include <map>
using namespace std; const int MAX_N = 5001;
int arr[MAX_N];//数据记录
int C[MAX_N];//C[i],下标为i的时候最长子序列有多少个
int MaxLen[MAX_N];//MaxLen[i],下标为i的时候,最长子序列多长 void getLenAndNum(int &len, int &c, int n)
{
memset(C, 0, sizeof(int) * n);
C[0] = MaxLen[0] = 1;
for (int i = 1; i < n; i++)
{
MaxLen[i] = 1;//初始值为仅仅有一个
for (int j = 0; j < i; j++)
{
if (arr[j] > arr[i] && MaxLen[i] < MaxLen[j] + 1)
MaxLen[i] = MaxLen[j] + 1;
}//求以当前i下标结束的时候。最长子序列长度
for (int j = 0; j < i; j++)
{
if (arr[j] > arr[i] && MaxLen[i] == MaxLen[j] + 1)
C[i] += C[j];
}//求有多少最长子序列
if (!C[i]) C[i] = 1;//注意是递增数列的时候
for (int j = 0; j < i; j++)
{
if (arr[j] == arr[i] && MaxLen[i] == MaxLen[j]) C[i] -= C[j];
}//去掉反复计算,方便后面的统计
}
len = 0;
for (int i = 0; i < n; i++)
{
if (len < MaxLen[i]) len = MaxLen[i];
}//找出最长子序列
c = 0;
for (int i = 0; i < n; i++)
{
if (len == MaxLen[i]) c += C[i];
}//找出最长子序列数
} int main()
{
int N;
while (~scanf("%d", &N))
{
for (int i = 0; i < N; i++)
{
scanf("%d", arr+i);
}
int len, c;
getLenAndNum(len, c, N);
printf("%d %d\n", len, c);
}
return 0;
}

POJ 1952 BUY LOW, BUY LOWER 动态规划题解的更多相关文章

  1. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  2. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  3. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  4. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  5. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  6. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  7. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  8. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  9. POJ 1952 BUY LOW, BUY LOWER

    $dp$. 一开始想了一个$dp$做法,$dp[i][j]$表示前$i$个数字,下降序列长度为$j$的方案数为$dp[i][j]$,这样做需要先离散化然后用树状数组优化,空间复杂度为${n^2}$,时 ...

随机推荐

  1. 编写webconfig连接串与使用(新)

    原文发布时间为:2008-07-27 -- 来源于本人的百度文章 [由搬家工具导入] webconfig 中<appSettings/> 得后面代码添加如下: <appSetting ...

  2. Spring Boot的web开发&静态资源配置方式

    Web开发的自动配置类:org.springframework.boot.autoconfigure.web.WebMvcAutoConfiguration 1.1. 自动配置的ViewResolve ...

  3. luogu 2735 电网 皮克公式

    题目链接 题意 给定一个格点三角形,三个顶点分别为(0,0),(n,m),(p,0),求三角形内部的格点个数. 思路 皮克公式: \[S = \frac{i}{2}+b-1\] \(S\)为三角形面积 ...

  4. Linux Malloc分析-从用户空间到内核空间【转】

    转自:http://blog.csdn.net/ordeder/article/details/41654509 版权声明:本文为博主(http://blog.csdn.net/ordeder)原创文 ...

  5. Vijos 1323: 化工厂装箱员

    题形:DP 题意:A,B,C三种物品,一共N个,顺序摆放,按顺序拿.每次手上最多能拿10个物品,然后可以将某个类别的物品分类放好,再从剩下的拿,补全10个.问最少放几次,可以把所有物品分类好. 思路: ...

  6. LeetCode OJ--Path Sum *

    https://oj.leetcode.com/problems/path-sum/ 树的深搜,求从根到叶子的路径. 记住深搜的样子 #include <iostream> using n ...

  7. EXT.JS6中的model,store,proxy的一些用法

    //one-to-one Ext.define('Address', { extend: 'Ext.data.Model', fields: [ 'address', 'city', 'state', ...

  8. R语言实战读书笔记(八)回归

    简单线性:用一个量化验的解释变量预测一个量化的响应变量 多项式:用一个量化的解决变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性:用两个或多个量化的解释变量预测一个量化的响应变量 多变量: ...

  9. 多协议底层攻击工具Yesinia

    多协议底层攻击工具Yesinia   Yesinia是一款底层协议攻击工具.它提供多种运行模式,如终端文本模式.GTK图形模式.NCurses模式.守护进程模式.它利用各种底层协议的漏洞实施攻击,支持 ...

  10. BZOJ 2131 [scoi2010] 传送带

    @(BZOJ)[三分法] Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段. 两条传送带分别为线段AB和线段CD. lxhgww在AB上的移动速度为P,在CD上的移 ...