C. Propagating tree
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Iahub likes trees very much. Recently he discovered an interesting tree named propagating tree. The tree consists of n nodes numbered from 1 to n, each node i having an initial value ai. The root of the tree is node 1.

This tree has a special property: when a value val is added to a value of node i, the value -val is added to values of all the children of node i. Note that when you add value -val to a child of node i, you also add -(-val) to all children of the child of node i and so on. Look an example explanation to understand better how it works.

This tree supports two types of queries:

  • "1 x val" — val is added to the value of node x;
  • "2 x" — print the current value of node x.

In order to help Iahub understand the tree better, you must answer m queries of the preceding type.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 200000). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 1000). Each of the next n–1 lines contains two integers vi and ui (1 ≤ vi, ui ≤ n), meaning that there is an edge between nodes vi and ui.

Each of the next m lines contains a query in the format described above. It is guaranteed that the following constraints hold for all queries: 1 ≤ x ≤ n, 1 ≤ val ≤ 1000.

Output

For each query of type two (print the value of node x) you must print the answer to the query on a separate line. The queries must be answered in the order given in the input.

Examples
input
5 5
1 2 1 1 2
1 2
1 3
2 4
2 5
1 2 3
1 1 2
2 1
2 2
2 4
output
3
3
0
Note

The values of the nodes are [1, 2, 1, 1, 2] at the beginning.

Then value 3 is added to node 2. It propagates and value -3 is added to it's sons, node 4 and node 5. Then it cannot propagate any more. So the values of the nodes are [1, 5, 1,  - 2,  - 1].

Then value 2 is added to node 1. It propagates and value -2 is added to it's sons, node 2 and node 3. From node 2 it propagates again, adding value 2 to it's sons, node 4 and node 5. Node 3 has no sons, so it cannot propagate from there. The values of the nodes are[3, 3,  - 1, 0, 1].

You can see all the definitions about the tree at the following link: http://en.wikipedia.org/wiki/Tree_(graph_theory)

思路;

  dfs序同时处理深度,然后搞搞就a了;

来,上代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 200005
#define LL long long using namespace std; struct EdgeType {
int v,e;
};
struct EdgeType edge[maxn<<]; struct TreeNodeType {
int l,r,dis,mid,flag;
};
struct TreeNodeType tree[maxn<<]; int if_z,n,m,dis[maxn],head[maxn];
int cnt,f[maxn],li[maxn],ri[maxn];
int id[maxn],dis_[maxn],type,x,ans; bool deep[maxn]; char Cget; inline void in(int &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} void search_1(int now,int fa)
{
deep[now]=!deep[fa],f[now]=fa;
id[now]=++cnt,li[now]=cnt,dis_[cnt]=dis[now];
if(!deep[now]) dis_[cnt]*=-;
for(int i=head[now];i;i=edge[i].e)
{
if(edge[i].v==f[now]) continue;
search_1(edge[i].v,now);
}
ri[now]=cnt;
} void tree_build(int now,int l,int r)
{
tree[now].l=l,tree[now].r=r;
if(l==r)
{
tree[now].dis=dis_[l];
return ;
}
tree[now].mid=(l+r)>>;
tree_build(now<<,l,tree[now].mid);
tree_build(now<<|,tree[now].mid+,r);
} void tree_do(int now,int l,int r)
{
if(tree[now].l==l&&tree[now].r==r)
{
if(type==)
{
tree[now].flag+=x;
if(l==r) tree[now].dis+=x;
}
else ans+=tree[now].dis;
return ;
}
if(tree[now].flag)
{
tree[now<<].flag+=tree[now].flag;
tree[now<<|].flag+=tree[now].flag;
if(tree[now<<].l==tree[now<<].r) tree[now<<].dis+=tree[now].flag;
if(tree[now<<|].l==tree[now<<|].r) tree[now<<|].dis+=tree[now].flag;
tree[now].flag=;
}
if(l>tree[now].mid) tree_do(now<<|,l,r);
else if(r<=tree[now].mid) tree_do(now<<,l,r);
else
{
tree_do(now<<,l,tree[now].mid);
tree_do(now<<|,tree[now].mid+,r);
}
} int main()
{
in(n),in(m);int u,v;
for(int i=;i<=n;i++) in(dis[i]);
for(int i=;i<n;i++)
{
in(u),in(v);
edge[++cnt].v=v,edge[cnt].e=head[u],head[u]=cnt;
edge[++cnt].v=u,edge[cnt].e=head[v],head[v]=cnt;
}
cnt=,search_1(,);
tree_build(,,n);
while(m--)
{
in(type),in(u);
if(type==)
{
in(x);
if(!deep[u]) x*=-;
tree_do(,li[u],ri[u]);
}
else
{
ans=;
tree_do(,li[u],li[u]);
if(!deep[u]) ans*=-;
printf("%d\n",ans);
}
}
return ;
}

AC日记——Propagating tree Codeforces 383c的更多相关文章

  1. AC日记——825G - Tree Queries

    825G - Tree Queries 思路: 神题,路径拆成半链: 代码: #include <cstdio> #include <cstring> #include < ...

  2. AC日记——Cards Sorting codeforces 830B

    Cards Sorting 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include <iostream> ...

  3. AC日记——Card Game codeforces 808f

    F - Card Game 思路: 题意: 有n张卡片,每张卡片三个值,pi,ci,li: 要求选出几张卡片使得pi之和大于等于给定值: 同时,任意两两ci之和不得为素数: 求选出的li的最小值,如果 ...

  4. AC日记——Success Rate codeforces 807c

    Success Rate 思路: 水题: 代码: #include <cstdio> #include <cstring> #include <iostream> ...

  5. AC日记——T-Shirt Hunt codeforces 807b

    T-Shirt Hunt 思路: 水题: 代码: #include <cstdio> #include <cstring> #include <iostream> ...

  6. AC日记——Magazine Ad codeforces 803d

    803D - Magazine Ad 思路: 二分答案+贪心: 代码: #include <cstdio> #include <cstring> #include <io ...

  7. AC日记——Broken BST codeforces 797d

    D - Broken BST 思路: 二叉搜索树: 它时间很优是因为每次都能把区间缩减为原来的一半: 所以,我们每次都缩减权值区间. 然后判断dis[now]是否在区间中: 代码: #include ...

  8. AC日记——Array Queries codeforces 797e

    797E - Array Queries 思路: 分段处理: 当k小于根号n时记忆化搜索: 否则暴力: 来,上代码: #include <cmath> #include <cstdi ...

  9. AC日记——Maximal GCD codeforces 803c

    803C - Maximal GCD 思路: 最大的公约数是n的因数: 然后看范围k<=10^10; 单是答案都会超时: 但是,仔细读题会发现,n必须不小于k*(k+1)/2: 所以,当k不小于 ...

随机推荐

  1. MySQL 查询优化之 Block Nested-Loop 与 Batched Key Access Joins

    MySQL 查询优化之 Block Nested-Loop 与 Batched Key Access Joins 在MySQL中,可以使用批量密钥访问(BKA)连接算法,该算法使用对连接表的索引访问和 ...

  2. 【linux】 服务器文件说明

    文件名 说明 /etc/resolv.conf  域名解析服务器地址文件 /etc/services 服务程序对应端口号文件 /etc/passwd 登录账号文件 /etc/hosts 本地IP域名解 ...

  3. w3resource_MySQL练习: Aggregate_functions

    w3resource_MySQL练习题:Aggregate_functions   1. Write a query to list the number of jobs available in t ...

  4. Win7里IIS7部署WebService

    最近忙于一个Web的Bug修正,是先人写的一个东东,架构很简单,一个前端的项目,一个WebService的项目,以及后台的一些dll.之前一直很排斥这个产品,因为它没法启动,印象中没有跑得起来过的时候 ...

  5. LOFTER 迁移

    title: LOFTER 迁移 date: 2018-09-01 16:41:02 updated: tags: [其他] description: keywords: comments: imag ...

  6. base64转图片

    y一个简单的工具类,附上: /** * @param imgStr 图片的base64 * @param path 将要生成的地址 * @return */ public static boolean ...

  7. monkey测试工具与常用的linux命令

    Monkey测试工具 说明:monkey是一个安卓自带的命令行工具,可以模拟用户向应用发起一定的伪随机事件.主要用于对app进行稳定性测试与压力测试. 实现:首先需要安装一个ADB工具,安装完之后,需 ...

  8. Leetcode4--->求两个排序数组的中位数

    题目:给定两个排序数组,求两个排序数组的中位数,要求时间复杂度为O(log(m+n)) 举例: Example 1: nums1 = [1, 3] nums2 = [2] The median is ...

  9. PHP 教父鸟哥 Yar 的原理分析

    模块越来越多,业务越来越复杂,RPC 就上场了,在 PHP 的世界里,鸟哥的作品一直备受广大网友的青睐.下面一起学习下鸟哥的 PRC 框架 Yar . 揭开 Yar 神秘面纱 RPC 采用客户端/服务 ...

  10. pl/sql 函数及与存储过程的区别

    函数用于返回特定的数据,当建立函数时,在函数头部必须包含return子句.而在函数体内必须包含return语句返回的数据.我们可以使用create function来建立函数. 1).接下来通过一个案 ...