@[高斯消元]

Description

有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球

面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

Input

第一行是一个整数\(n(1<=N=10)\)。接下来的\(n + 1\)行,每行有\(n\)个实数,表示球面上一点的\(n\)维坐标。每一个实数精确到小数点

后6位,且其绝对值都不超过\(20000\)。

Output

有且只有一行,依次给出球心的n维坐标(\(n\)个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后\(3\)位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

Sample Input

2
0.0 0.0
-1.0 1.0
1.0 0.0

Sample Output

0.500 1.500

HINT

提示:给出两个定义:1、 球心:到球面上任意一点距离都相等的点。2、 距离:设两个n为空间上的点A, B的坐标为\((a_1, a_2 .. a_n), (b_1, b_2 .. b_n)\), 则AB的距离定义为:\(dist = \sqrt{(a_1 - b_1) ^ 2 + (a_2 - b_2) ^ 2 + .. + (a_n - b_n) ^ 2}\)

Solution

這題很尷尬的一點就是方程帶有二次項, 而且半徑也尚不能確定.

然而又發現, 這題只有\(n\)個未知數, 但是給了\(n + 1\)個點的座標. 因此, 這一題可以通過作差的方式把二次项降到一次項. 具體來說, 就是:

原式:

\[(a_1 - x_1) ^ 2 + (a_2 - x_2) ^ 2 + .. + (a_n - x_n) ^ 2 = r ^ 2
\]

\[(b_1 - x_1) ^ 2 + (b_2 - x_2) ^ 2 + .. + (b_n - x_n) ^ 2 = r ^ 2
\]

作差後:

\[(a_1 - x_1) ^ 2 + (a_2 - x_2) ^ 2 + .. + (a_n - x_n) ^2 = (b_1 - x_1) ^ 2 + (b_2 - x_2) ^ 2 + .. + (b_n - x_n) ^ 2
\]

\[2 * (a_1 - b_1) * x_1 + (a_2 - b_2) * x_2 + .. + (a_n - b_n) * x_n = a_1 ^ 2 + a_2 ^ 2 + .. + a_n ^ 2 - b_1 ^ 2 - b_2 ^ 2 - .. - b_n ^ 2
\]

因此\(n - 1\)個座標得到\(n\)個線性方程組, 可以用高斯消元發解決.

至於關於高斯消元發的具體步驟, 直接看代碼就好了.

#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N = 1 << 4;
double f[N];
double equa[N][N]; inline double sqr(double x)
{
return x * x;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("BZOJ1013.in", "r", stdin);
freopen("BZOJ1013.out", "w", stdout);
#endif int n;
scanf("%d", &n); for(int i = 0; i < n; i ++)
scanf("%lf", &f[i]); memset(equa, 0, sizeof(equa)); for(int i = 0; i < n; i ++)
for(int j = 0; j < n; j ++)
{
double x;
scanf("%lf", &x);
equa[i][j] = 2 * (x - f[j]);
equa[i][n] += sqr(x) - sqr(f[j]);
} for(int i = 0; i < n; i ++)
{
double mx = - 1.0;
int ID; for(int j = i; j < n; j ++)
if(fabs(equa[j][i]) > mx)
mx = fabs(equa[j][i]), ID = j; swap(equa[ID], equa[i]); for(int j = 0; j < n; j ++)
if(i != j)
for(int k = n; ~ k; k --)
equa[j][k] -= equa[j][i] / equa[i][i] * equa[i][k];
} for(int i = 0; i < n - 1; i ++)
printf("%.3lf ", equa[i][n] / equa[i][i]); printf("%.3lf\n", equa[n - 1][n] / equa[n - 1][n - 1]);
}

BZOJ1013球形空间产生器sphere 高斯消元的更多相关文章

  1. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  2. bzoj1013球形空间产生器sphere 高斯消元(有系统差的写法

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  3. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  4. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  5. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  6. BZOJ 1013 球形空间产生器sphere 高斯消元

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1013 题目大意: 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困 ...

  7. 【BZOJ 1013】【JSOI2008】球形空间产生器sphere 高斯消元基础题

    最基础的高斯消元了,然而我把j打成i连WA连跪,考场上再犯这种错误就真的得滚粗了. #include<cmath> #include<cstdio> #include<c ...

  8. 【BZOJ1013】球形空间产生器(高斯消元)

    [BZOJ1013]球形空间产生器(高斯消元) 题面 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标, ...

  9. 【BZOJ1013】[JSOI2008] 球形空间产生器(高斯消元)

    点此看题面 大致题意: 给定一个\(n\)维球体上的\(n+1\)个点,请你求出这个球体的圆心的位置. 列出方程 这一看就是一道解方程题. 我们可以设这个球体的圆心的位置为\((x_1,x_2,..x ...

随机推荐

  1. 字符串-POJ3974-Palindrome

    Palindrome Time Limit: 15000MS Memory Limit: 65536K Description Andy the smart computer science stud ...

  2. linux学习-主机的细部权限规划:ACL 的使用

    传统的权限仅有三种身份 (owner, group, others) 搭配三种权限 (r,w,x) 而已,并没有办法单纯的针对某一个使用者或某一个群 组来设定特定的权限需求,此时就得要使用 ACL 这 ...

  3. Hadoop4.2HDFS测试报告之五

    第二组:文件存储读过程记录 NameNode:1 DataNode:1 本地存储 scp romotepath localpath 500 2 1 23.05 NameNode:1 DataNode: ...

  4. 1507: [NOI2003]Editor(块状链表)

    1507: [NOI2003]Editor Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4157  Solved: 1677[Submit][Stat ...

  5. 实现socket并发的几种方法

    # 使用多进程实现socket聊天并发-server #服务端 import socket from multiprocessing import Process def server(conn,ad ...

  6. iOS开发-NSLog不打印设置 Prefix

    首先在-Prefix.pch,文件里添加如下代码 #ifdef DEBUG #define NSLog(...) NSLog(__VA_ARGS__) #define debugMethod() NS ...

  7. Flask_单例模式

    在flask实现单例模式的方法有多种: 这里我们列举五种,行吗? 第一种: 国际惯例:基于文件导入 第二种: 基于类的单例模式: 它又分两种: 一种加锁,一种不加锁. 不加锁的话,可以并发,但是我们的 ...

  8. mac iterm 快捷键

    标签 新建标签:command + t 关闭标签:command + w 切换标签:command + 数字 command + 左右方向键 切换全屏:command + enter 查找:comma ...

  9. LibreOJ2042 - 「CQOI2016」不同的最小割

    Portal Description 给出一个给出一个\(n(n\leq850)\)个点\(m(m\leq8500)\)条边的无向图.定义\(cut(s,t)\)等于\(s,t\)的最小割的容量,求在 ...

  10. 【2018.12.17】NOI模拟赛4

    题目 WZJ题解 T1 T2 T3 后缀自动机+($parents$ 树)树链剖分 发现有大量子串需要考虑,考虑摁死子串的一端. 首先,这题显然是一道离线题,因为所有的询问都是 $1$ 到 某个数,也 ...