题意:

  给一个有n*m格子的矩形,设每格边长100,要从(1,1)走到(n,m)需要耗(n+m)*100,但是其中有一些格子是可以直接穿过的,也就是走对角线,是100*根号2长,给出k个可以穿过的格子,要求最短路径是多少?

思路:

  研究一下知道当选择了某个可穿过的格子(x,y),那么对于任意格子(>x,y)和(x,>y)都是不能再选的,因为这样会更长,也就是说同一行最多只能选一个格子穿过。一开始想到的是在一个拓扑序列中求最小路径的权之和,这个模型倒是没错,但是怎么建立一个这样的图就麻烦了。再想到用DP来穷举每个格子,复杂度O(N*M),上限有100亿,会超时,而且当k=1,n=m=100000时,复杂度还要n*m。看到别人提出LIS最长递增子序列。先按x坐标排个序,对于每个可穿的格子,判断若要穿过此格子,其前面还能穿过几个。按照O(N^2)的方法做的,代码较短。

 #include<bits/stdc++.h>
using namespace std;
const int N=;
int n, m, k, dp[N];
struct node
{
int x,y;
}a[N];
int cmp(node a, node b)
{
return a.x < b.x ? :;
}
bool cpr(node *a, node *b)//这里与LIS不同在:这是二维的
{
if(a->x < b->x && a->y < b->y )
return true;
else
return false;
}
int cal()
{
memset(dp,,sizeof(dp));
int big=;
for(int i=; i<=k; i++)
{
int j=i, tmp=;
while(--j)
if( dp[j]>tmp && cpr(&a[j],&a[i])) tmp=dp[j];
dp[i]=tmp+;
if(dp[i]>big) big=dp[i];
}
return big;
}
int main()
{
//freopen("e://input.txt","r",stdin);
while(cin>>n>>m)
{
cin>>k;
a[].x=a[].y=-;
for(int i=; i<=k; i++)
scanf("%d%d",&a[i].x,&a[i].y); //x是n那边的
sort(a+,a+k+,cmp);
int cnt=cal();
double ans=(n+m-*cnt)*+sqrt(2.0)**cnt;
printf("%d\n",(int)(ans+0.5));
}
return ;
}

AC代码

NBUT 1116 Flandre's Passageway (LIS变形)的更多相关文章

  1. 九度 1557:和谐答案 (LIS 变形)

    题目描述: 在初试即将开始的最后一段日子里,laxtc重点练习了英语阅读的第二部分,他发现了一个有意思的情况.这部分的试题最终的答案总是如下形式的:1.A;2.C;3.D;4.E;5.F.即共有六个空 ...

  2. hdu 1087(LIS变形)

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  3. UVA 437 巴比伦塔 【DAG上DP/LIS变形】

    [链接]:https://cn.vjudge.net/problem/UVA-437 [题意]:给你n个立方体,让你以长宽为底,一个个搭起来(下面的立方体的长和宽必须大于上面的长和宽)求能得到的最长高 ...

  4. UVa 1471 (LIS变形) Defense Lines

    题意: 给出一个序列,删掉它的一个连续子序列(该子序列可以为空),使得剩下的序列有最长的连续严格递增子序列. 分析: 这个可以看作lrj的<训练指南>P62中讲到的LIS的O(nlogn) ...

  5. hdu5773--The All-purpose Zero(LIS变形)

    题意:给一个非负整数的数列,其中0可以变成任意整数,包括负数,求最长上升子序列的长度. 题解:LIS是最简单的DP了,但是变形之后T^T真的没想到.数据范围是10^5,只能O(nlogn)的做法,所以 ...

  6. UVA1471( LIS变形)

    这是LIS的变形,题意是求一个序列中去掉某个连续的序列后,能得到的最长连续递增序列的长度. 用DP的解法是:吧这个序列用数组a来记录,再分别用两个数组f记录以i结尾的最长连续递增序列的长度,g[i]记 ...

  7. HDU-1160.FatMouse'sSpeed.(LIS变形 + 路径打印)

    本题大意:给定一定数量的数对,每个数保存着一只老鼠的质量和速度,让你求出一个最长序列,这个序列按照质量严格递增,速度严格递减排列,让你输出这个序列的最长长度,并且输出组成这个最长长度的序列的对应的老鼠 ...

  8. POJ 1836-Alignment(DP/LIS变形)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13465   Accepted: 4336 Descri ...

  9. poj 1836 LIS变形

    题目链接http://poj.org/problem?id=1836 Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submiss ...

随机推荐

  1. C++ TUTORIAL - MEMORY ALLOCATION - 2016

    http://www.bogotobogo.com/cplusplus/memoryallocation.php Variables and Memory Variables represent st ...

  2. ASP.NET Core快速入门_学习笔记汇总

    第2章 配置管理 任务12:Bind读取配置到C#实例 任务13:在Core Mvc中使用Options 任务14:配置的热更新 任务15:配置框架设计浅析 第3章 依赖注入 任务16:介绍- 任务1 ...

  3. Spring Boot 学习系列(09)—自定义Bean的顺序加载

    此文已由作者易国强授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Bean 的顺序加载 有些场景中,我们希望编写的Bean能够按照指定的顺序进行加载.比如,有UserServ ...

  4. 安装APK时SO库的选择策略

    此文已由作者尹彬彬授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 0X0 前言 在Android系统中,当我们安装apk文件的时候,lib目录下的so文件会被解压到app的原 ...

  5. 翻转链表中相邻的k个节点

    示例: 输入:1->2->3->4->5 k=2 输出:2->1->4->3->5 k=3输出:3->2->1->4->5 Py ...

  6. [Swift 开发] 使用闭包传值(typealias)

    在Swift中使用闭包来实现两个界面的传值 例如:有A类和B类. B类 //声明闭包 typealias valueBlock = (Float)->() var returnPrice: va ...

  7. 访问web-inf下jsp资源的几种方式

    转自:http://blog.csdn.NET/eidolon8/article/details/7050114 方法一: 本来WEB-INF中的jsp就是无法通过地址栏访问的,所以安全. 如果说你要 ...

  8. CTP Release() 的注意问题

    测试时发现CThostFtdcMdSpi有个比较严重的问题,就是使用Release()退出清理对象时 会出现死机,并且频率很高,怎样解决? 答:请参考以下代码的释放顺序. template <c ...

  9. [HNOI2010] 弹飞绵羊 bounce

    标签:分块.题解: 200000,而且标号从0开始,很符合分块的条件啊.看看怎么实现. 首先分成√n个区间,然后如果我们对于每一个位置i,求出一个Next[i]和step[i],分别表示跳到的后一个位 ...

  10. [Xcode 实际操作]七、文件与数据-(21)ARKit增强现实框架的使用

    目录:[Swift]Xcode实际操作 本文将演示ARKit增强现实框架的使用. 创建一个新的项目:[Create a new Xcode project] ->在打开的模板选择中,选择增强现实 ...