标签: ACM


题目:

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

Input

Line 1: Two space-separated integers: M and N

Lines 2.. M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

Output

Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

Sample Input

2 3

1 1 1

0 1 0

Sample Output

9

Hint

Number the squares as follows:

1 2 3

4

There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

题意:

第一行输入草地长宽,后面输入该地方能不能使用,输出可以使用的所有方案

解题思路

从例题来看第一层有五种可能分别为000,001,010,100,101,都标记为1种可能

第二层可以有000010两种状态,但是与上一层比较000与上一层五种状态都不冲突标记为5种可能,而010与上一层010状态冲突,所以标记为4种可能

第二层为最底层,将最后一层的可能性全部相加得到9

使用状态压缩,将所有可能存在状态储存到数组里面

然后从第一层存在的状态标记为1

从第二层开始遍历到最后一层,第二层存在的状态且不和上一层冲突将上一层的状态标记加到该层的标记上

遍历到最后一层时将最后一层的状态总和加起来就是所有的可能性

注:根据题意答案要对100000000取余

AC代码

#include <iostream>
#include <string.h>
#define M 4100
#define N 15
using namespace std;
int map[N]; //该行的输入状态
int m,n;
int dp[N][M];
int p;//该列最大状态
int s[M]; //储存每一行拥有的状态最大4096种状态
int mod=100000000;
bool checkLine(int i) //该行是否满足条件
{
return !(i&(i>>1));
}
bool checkTwoLine(int i,int j) //与上一行是否冲突
{
return !(i&j);
}
bool include(int i,int j) //是否是包含关系
{
return ((i|j)==i);
}
void init()
{
p=0;
int i,j;
for(i=0;i<(1<<m);i++)
if(checkLine(i))
s[p++]=i;
}
void solve()
{
int i,j,k;
int ans=0;
for(i=0;i<p;i++)
if(include(map[0],s[i]))
dp[0][i]=1; for(i=1;i<n;i++)
for(j=0;j<p;j++) //该行的状态
{
if(!include(map[i],s[j]))
continue;
else
for(k=0;k<p;k++) //上一行的状态
{
if(include(map[i-1],s[k])&&checkTwoLine(s[j],s[k]))
dp[i][j]=(dp[i][j]+dp[i-1][k])%mod;
}
}
for(i=0;i<p;i++)
ans=(ans+dp[n-1][i])%mod;
cout<<ans<<endl;
}
int main()
{
while(cin>>n>>m)
{
memset(map,0,sizeof(map));
int i,j;
for(i=0;i<n;i++)
for(j=0;j<m;j++)
{
int plant;cin>>plant;
if(plant){
map[i]+=(1<<j); //将输入转换成二进制储存
}
}
init();
solve();
} return 0;
}

状态压缩---状态压缩dp第一题的更多相关文章

  1. 状态压缩dp第一题

    标签: ACM 题目: Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; ...

  2. 状态压缩---区间dp第一题

    标签: ACM 题目 Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is ...

  3. TTTTTTTTTTT hdu 1520 Anniversary party 生日party 树形dp第一题

    Anniversary party Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  4. HihoCoder 1055 : 刷油漆 树形DP第一题(对象 点)

    刷油漆 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上回说到,小Ho有着一棵灰常好玩的树玩具!这棵树玩具是由N个小球和N-1根木棍拼凑而成,这N个小球都被小Ho标上了 ...

  5. hdu1520树形dp第一题

    判断最大的欢喜值,如果上司来了,直系下属就不来 如果子节点j不来那么dp[i][1]+=dp[j][0];如果子节点j来那么dp[i][0]+=max(dp[j][0],dp[j][1]);//因为j ...

  6. HDU3555 Bomb 数位DP第一题

    The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the ti ...

  7. POJ 1155 TELE 背包型树形DP 经典题

    由电视台,中转站,和用户的电视组成的体系刚好是一棵树 n个节点,编号分别为1~n,1是电视台中心,2~n-m是中转站,n-m+1~n是用户,1为root 现在节点1准备转播一场比赛,已知从一个节点传送 ...

  8. ZOJ 3471 压缩状态DP

    这个问题要看状态怎么想,第一种直接的想法是1代表未合并,状态就从1111111 转移到 带有1个0,然后带有两个0, 但是这样子编程非常不直观.换一种思路,0代表未合并,但是我可以先合并前几个,就是说 ...

  9. POJ 3254 压缩状态DP

    题意:一个矩形网格,可以填0或1, 但有些位置什么数都不能填,要求相邻两个不同时为1,有多少种填法.矩形大小最大 12*12. 压缩状态DP大多有一个可行的state的范围,先求出这个state范围, ...

随机推荐

  1. office2016出现 此功能看似已中断 并需要修复

  2. 查看电脑MAC地址

    MAC地址也叫物理地址 1.运行 cmd 输入ipconfig或ipconfig/all

  3. SQL——登陆触发器实现限制IP

    [转载]原文地址:https://www.baidu.com/link?url=N-SM28ge21TTYky79dYk8otsjKgYCIpy-0RBSvMV25f8KSOsYczhxTOCzeNZ ...

  4. tinyxml一些应注意的问题

     今天在对使用tinyxml库的程序调试的时候,出现的一些问题让人很纠结,特记以此... 在对TixmlDocument创建时我是用new创建的,然后在用完之后我用delete释放掉,可是用gdb调试 ...

  5. C++构造函数和拷贝构造函数详解

    构造函数.析构函数与赋值函数是每个类最基本的函数.它们太普通以致让人容易麻痹大意,其实这些貌似简单的函数就象没有顶盖的下水道那样危险. 每个类只有一个析构函数和一个赋值函数,但可以有多个构造函数(包含 ...

  6. WindApi2 , WindOriginalApiLibrary 突然不兼容问题

    1. 在新的电脑上从tfs拉下代码后编译, windoriginalapilibrary 这个工程弹出对话框,要求转为vs2013编译,选择同意,编译成功 2.WindApi2 的Reference列 ...

  7. Html5shiv ---- 让IE低版本浏览器识别并支持HTML5标签

    Html5shiv.js是针对IE浏览器的 javaScript 补丁,作用如题 该脚本的下载链接 使用使在head标签中使用script标签引用即可

  8. ScrollTo:实现平滑滚动到页面指定位置

    ScrollTo:实现平滑滚动到页面指定位置 ScrollTo是一款基于jQuery的滚动插件,当点击页面的链接时,可以平滑地滚动到页面指定的位置.适用在一些页面内容比较多,页面长度有好几屏的场合,本 ...

  9. iOS蓝牙传输数据演示-3

    蓝牙传输数据演示 在上一小节中,我们一起开发了基于蓝牙通讯的工具类,该类中详细的实现蓝牙连接流程中的每一个环节 本小节我们就以给小米手环发送数据使其震动来演示我们工具类的用法 工具类本身具有通用性,属 ...

  10. attribute与property区别总结

    在前阵子看JQuery源码中,attr()的简单理解是调用了element.getAttribute()和element.setAttribute()方法,removeAttr()简单而言是调用ele ...