题意:有n个城市,有p条单向路径,连通n个城市,旅行商从0城市开始旅行,那么旅行完所有城市再次回到城市0至少需要旅行多长的路程。

思路:n较小的情况下可以使用状态压缩dp,设集合S代表还未经过的城市的集合,那么dp[S][v]:当前旅行商还有集合S中的城市没有旅行,并且在城市v时走过的所有路径长度

参考代码:

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<string>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<functional>
using namespace std;
const int N_MAX=;
int n,p;//p为单向路径的数量
int d[N_MAX][N_MAX];
int dp[<<N_MAX][N_MAX];//dp[S][v]:集合S:还未去过的城市集合,v当前所在的城市,dp[0][0]表示所有城市都去过,且当前在0城市,所走过的路程
int main() {
scanf("%d%d",&n,&p);
for (int i = ; i < n; i++)
fill(d[i], d[i] + n, INT_MAX / );
for (int i = ; i < p; i++) {
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
d[a][b] = c;
}
for (int S = ; S < << n;S++) {
fill(dp[S], dp[S] + n,INT_MAX/);
}
dp[( << n) - ][] = ;
for (int S = ( << n) - ; S >= ; S--) {
for (int v = ; v < n;v++) {//若当前在v城市
for (int u = ; u < n; u++) {
if (S >> u & ) {//若u还没去过
dp[S&~( << u)][u] = min(dp[S&~( << u)][u],dp[S][v]+d[v][u]);
}
}
}
}
printf("%d\n",dp[][]); return ;
}

TSP 旅行商问题(状态压缩dp)的更多相关文章

  1. 旅行商问题——状态压缩DP

    问题简介 有n个城市,每个城市间均有道路,一个推销员要从某个城市出发,到其余的n-1个城市一次且仅且一次,然后回到再回到出发点.问销售员应如何经过这些城市是他所走的路线最短? 用图论的语言描述就是:给 ...

  2. HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))

    Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...

  3. HNUSTOJ-1698 送外卖(TSP问题 + 状态压缩DP)

    1698: 送外卖 时间限制: 1 Sec  内存限制: 128 MB提交: 123  解决: 28[提交][状态][讨论版] 题目描述 在美团和饿了么大行其道的今天,囊中羞涩的小周和小美,也随大流加 ...

  4. Light OJ 1316 A Wedding Party 最短路+状态压缩DP

    题目来源:Light OJ 1316 1316 - A Wedding Party 题意:和HDU 4284 差点儿相同 有一些商店 从起点到终点在走过尽量多商店的情况下求最短路 思路:首先预处理每两 ...

  5. 最短路+状态压缩dp(旅行商问题)hdu-4568-Hunter

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4568 题目大意: 给一个矩阵 n*m (n m<=200),方格里如果是0~9表示通过它时要花 ...

  6. BFS+状态压缩DP+二分枚举+TSP

    http://acm.hdu.edu.cn/showproblem.php?pid=3681 Prison Break Time Limit: 5000/2000 MS (Java/Others)   ...

  7. POJ 3311 Hie with the Pie(Floyd+状态压缩DP)

    题是看了这位的博客之后理解的,只不过我是又加了点简单的注释. 链接:http://blog.csdn.net/chinaczy/article/details/5890768 我还加了一些注释代码,对 ...

  8. poj 3311 Hie with the Pie(状态压缩dp)

    Description The Pizazz Pizzeria prides itself or more (up to ) orders to be processed before he star ...

  9. poj 3311(状态压缩DP)

    poj  3311(状态压缩DP) 题意:一个人送披萨从原点出发,每次不超过10个地方,每个地方可以重复走,给出这些地方之间的时间,求送完披萨回到原点的最小时间. 解析:类似TSP问题,但是每个点可以 ...

随机推荐

  1. java基础—面向对象2

    一.JAVA类的定义

  2. 经常用到的js函数

    //获取样式 function getStyle(obj,attr){ if(obj.currentStyle){ return obj.currentStyle[attr]; }else{ retu ...

  3. 用promise封装ajax

    首先贴代码 var ajaxOptions = { url: 'url', method: 'GET', async: true, data: null, dataType: 'text', } fu ...

  4. 51nod——2502最多分成多少块

    数据范围好小... 题目中没说要升序降序,不过样例解释里可以看出是要升序. #include <bits/stdc++.h> using namespace std; ],b[],visi ...

  5. Golang 简单静态web服务器

    直接使用 net.http 包,非常方便 // staticWeb package main import ( "fmt" "net/http" "s ...

  6. Markdown中如何添加特殊符号

    符号 说明 编码 符号 说明 编码 符号 说明 编码 " 双引号 " × 乘号 × ← 向左箭头 ← & AND符号 & ÷ 除号 ÷ ↑ 向上箭头 ↑ <  ...

  7. 用\r做出进度条

    在做ftp作业的时候,需要做一个上传和下载的进度条,做的时候发现用\r很容易就能做出来 def show_progress(self, has, total): rate = float(has) / ...

  8. golang连接orcale

    使用glang有一段时间了,最开始其实并不太喜欢他的语法,但是后来熟悉之后发现用起来还挺爽的.之前数据库一直使用mysql,连接起来没有什么问题,github上有很多完善的驱动,所以以为连接其他数据库 ...

  9. P1627 中位数

    P1627 中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式: 第一行为两个正整 ...

  10. stl vector 类

    目录 [-]说明构造方法例子vector 类中定义了4中种构造函数: · 默认构造函数,构造一个初始长度为0的空向量,如:vector<int> v1; · 带有单个整形参数的构造函数,此 ...