题目

输入格式

第一行,两个正整数 S 和 q,q 表示询问数量。

接下来 q 行,每行一个正整数 n。

输出格式

输出共 q 行,分别为每个询问的答案。

输入样例

30 3

9

29

1000000000000000000

输出样例

0

9

450000036

提示

对于100%的数据,2<=S<=2*106,1<=n<=1018,1<=q<=10^5

题解

DZY系列多神题

容易知道\(S\)所有质因子的指数最大为\(1\),否则结果都为\(0\)

如果满足,由\(S\)的范围可知其质因子最多有\(7\)个

那么\(n = \sum\limits_{i = 1}^{k} p_i * t_i\)

\(t_i\)表示第\(i\)个质因子选了几个

很像一个背包,但是\(n\)很大,考虑转化

我们先将\(n\)减去所有\(p_i\),保证至少选了一个

因为\(p_i\)是\(S\)的因子,所以可以写成\(p_i * t_i = Sx + p_iy\)且\([p_iy < S]\)

也就是分成若干个\(S\)和剩余不足\(S\)的部分

那么最终的\(n\)一定是由若干个前面部分的\(S\)和后面部分的\(p_iy\)相加而得

由于任意的\(p_iy < S\),所以\(\sum p_iy < k * S\),如果做背包,状态数为\(k^2 * S \approx 10^8\)

可以吧,做一个\(O(k * kS)\)的多重背包

看起来很汗,但可以跑过

至于这个多重背包的求法,就用一个类似滑动窗口的方法就可以实现\(O(k * kS)\)了

然后对于每个\(n\),枚举多出来的部分\(n \mod S + i * S\),\(0 \le i < 7\)

除了后面多出来的,前面的若干\(S\)要分配给那些质因子,用组合数挡板法即可

就可以\(O(7p)\)询问了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000,P = 1e9 + 7;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int f[15000000],g[15000000],inv[10];
int S,p[maxn],pi,sum;
LL N;
bool Sp(){
int x = S;
for (int i = 2; i * i <= x; i++)
if (x % i == 0){
int cnt = 0;
p[++pi] = i; sum += i;
while (x % i == 0) x /= i,cnt++;
if (cnt > 1) return true;
}
if (x - 1) p[++pi] = x,sum += x;
return false;
}
bool init(){
if (Sp()) return true;
f[0] = 1;
int M = pi * S;
for (int i = 1; i <= pi; i++){
memcpy(g,f,sizeof(f));
for (int j = 0; j < p[i]; j++)
{
LL w = 0;
for (int k = j; k <= M; k += p[i])
{
w = (w + g[k]) % P;
if (k - S >= 0) w = ((w - g[k - S]) % P + P) % P;
f[k] = w;
}
}
}
inv[0] = inv[1] = 1;
for (int i = 2; i < 10; i++) inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
return false;
}
int cal(LL x,int y){
LL n = x + y - 1,m = y - 1;
int re = 1;
for (int i = 1; i <= m; i++)
re = 1ll * re * ((n - i + 1) % P) % P * inv[i] % P;
return re;
}
int main(){
S = read(); int T = read();
if (init()){
while (T--) puts("0");
return 0;
}
while (T--){
N = read();
N -= sum;
if (N < 0){puts("0"); continue;}
LL ans = 0,cnt = N / S;
for (int i = 0; i < pi && i <= cnt; i++)
ans = (ans + 1ll * f[N % S + i * S] * cal(cnt - i,pi) % P) % P;
printf("%lld\n",ans);
}
return 0;
}

BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】的更多相关文章

  1. DZY Loves Math II:多重背包dp+组合数

    Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...

  2. [bzoj3462]DZY Loves Math II (美妙数学+背包dp)

    Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...

  3. BZOJ3462 DZY Loves Math II(动态规划+组合数学)

    容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...

  4. bzoj3462: DZY Loves Math II

    状态很差脑子不清醒了,柿子一直在推错.... ... 不难发现这个题实际上是一个完全背包 问题在于n太大了,相应的有质数的数量不会超过7个 假设要求sigema(1~plen)i pi*ci=n 的方 ...

  5. bzoj 3462: DZY Loves Math II

    3462: DZY Loves Math II Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 103[Submit][Sta ...

  6. DZY Loves Math II

    简要题面 对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数: \(p_1\le p_2\le\cdots\l ...

  7. BZOJ 3462 DZY Loves Math II ——动态规划 组合数

    好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...

  8. DZY Loves Math系列

    link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...

  9. [BZOJ] DZY Loves Math 系列 I && II

    为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...

随机推荐

  1. UVA1629 Cake slicing

    题目传送门 直接暴力定义f[x1][y1][x2][y2]是使对角为\((x1, y1),(x2, y2)\)这个子矩形满足要求的最短切割线长度 因为转移顺序不好递推,采用记忆化搜索 #include ...

  2. MySQL的入门与使用,sqlyog对数据库,表和数据的管理

    MySQL的入门 1.到mysql官网下载. 2.安装mysql软件(一定要放到英文路径下) 3.使用 验证是否成功 将mySQL的bin路径添加到系统环境变量Path中 打开dos命令窗口 Wind ...

  3. Angular 2 树节点的上下移动问题

    最近在做一个树节点的上下移动然后实现排序的问题.直接看图: 实现已选查询条件的上下移动.结合了primeng 的picklist 组件. 下面是html代码 <p-tabPanel header ...

  4. 谭浩强 c++程序设计第一章课后习题 第7题

    #include <iostream> using namespace std; int main() { int a,b,c; int f(int x,int y,int z);//这是 ...

  5. 自动布局之-NSLayoutConstraint

    AutoLayout概念是苹果自iOS6开始引入的概念. 目前为止,实现自动布局技术选型方面也可以使用xib和storyboard.在开发过程中通常登录.注册等变动可能性较小的视图,我会采用xib开发 ...

  6. 解决: Intelij IDEA 创建WEB项目时没有Servlet的jar包

    今天创建SpringMVC项目时 用到HttpServletRequest时, 发现项目中根本没有Servlet这个包, 在网上搜了一下,这个问题是因为web项目没有添加服务器导致的. 配置tomec ...

  7. es6中的变量声明

    目录 es6中的变量声明 变量的声明 es6中的变量声明 变量的声明 for (var i = 0; i < 5; i++) { console.log(i) } var声明 作用域问题 上面的 ...

  8. 项目实战15.1—企业级堡垒机 jumpserver一步一步搭建

    本文收录在Linux运维企业架构实战系列 环境准备 系统:CentOS 7 IP:192.168.10.101 关闭selinux 和防火墙 # CentOS 7 $ setenforce 0 # 可 ...

  9. 【CodeBase】PHP检查未知媒体文件的格式

    用法: <?php $filefullpath="F:/test/2awd45wr1e5fef5e5"; echo Format::check($filefullpath,[ ...

  10. LigerUI 快速开发UI框架 链接

    LigerUI 快速开发UI框架 http://www.ligerui.com/ jQuery ligerUI 中文官方网站 http://www.ligerui.com/demo.html