【贪心优化dp决策】bzoj1571: [Usaco2009 Open]滑雪课Ski
还有贪心优化dp决策的操作……
Description
Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪。很不幸,Bessie滑雪技术并不精湛。 Bessie了解到,在滑雪场里,每天会提供S(0<=S<=100)门滑雪课。第i节课始于M_i(1<=M_i<=10000),上的时间为L_i(1<=L_i<=10000)。上完第i节课后,Bessie的滑雪能力会变成A_i(1<=A_i<=100). 注意:这个能力是绝对的,不是能力的增长值。 Bessie买了一张地图,地图上显示了N(1 <= N <= 10,000)个可供滑雪的斜坡,从第i个斜坡的顶端滑至底部所需的时长D_i(1<=D_i<=10000),以及每个斜坡所需要的滑雪能力C_i(1<=C_i<=100),以保证滑雪的安全性。Bessie的能力必须大于等于这个等级,以使得她能够安全滑下。 Bessie可以用她的时间来滑雪,上课,或者美美地喝上一杯可可汁,但是她必须在T(1<=T<=10000)时刻离开滑雪场。这意味着她必须在T时刻之前完成最后一次滑雪。 求Bessie在实现内最多可以完成多少次滑雪。这一天开始的时候,她的滑雪能力为1.
Input
第1行:3个用空格隔开的整数:T, S, N。
第2~S+1行:第i+1行用3个空格隔开的整数来描述编号为i的滑雪课:M_i,L_i,A_i。
第S+2~S+N+1行:
第S+i+1行用2个空格隔开的整数来描述第i个滑雪坡:C_i,D_i。
Output
一个整数,表示Bessie在时间限制内最多可以完成多少次滑雪。
Sample Input
3 2 5
4 1
1 3
Sample Output
HINT
滑第二个滑雪坡1次,然后上课,接着滑5次第一个滑雪坡。
题目分析
显然是道dp题,不过这里讲下贪心优化决策。
其实这个名字可能有点太高大上了,它本质上就是通过预处理来减少复杂度。
有动态规划$f[i][j]$表示$i$时刻能力值为$j$能够滑雪的最多次数。
我们处理$l[i][j]$表示在$i$时刻结束的能力值为$j$的课程的最晚开始时间;$mins[i]$表示所需$1..i$能力值中用时最少的滑雪时间;$g[i]$表示$max\{f[i][j]\}$。
于是对于$f[i][j]$,有三种转移方式:
f[i][j] = f[i-][j];
if (l[i-][j])
f[i][j] = std::max(f[i][j], g[l[i-][j]]);
if (i >= mins[j])
f[i][j] = std::max(f[i][j], f[i-mins[j]][j]+);
以上就是dp中的一块技巧,感觉还是非常有趣的。
#include<bits/stdc++.h>
const int maxn = ;
const int maxc = ; int t,s,n;
int f[maxn][maxc],g[maxn],mins[maxc];
int l[maxn][maxc]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
memset(mins, 0x3f3f3f3f, sizeof mins);
memset(f, -0x3f3f3f3f, sizeof f);
t = read(), s = read(), n = read();
for (int i=; i<=s; i++)
{
int x = read(), y = read(), z = read();
l[x+y-][z] = std::max(l[x+y-][z], x);
}
for (int i=; i<=n; i++)
{
int x = read(), y = read();
for (int j=x; j<maxc; j++)
mins[j] = std::min(mins[j], y);
}
f[][] = ;
for (int i=; i<=t; i++)
for (int j=; j<maxc; j++)
{
f[i][j] = f[i-][j];
if (l[i-][j])
f[i][j] = std::max(f[i][j], g[l[i-][j]]);
if (i >= mins[j])
f[i][j] = std::max(f[i][j], f[i-mins[j]][j]+);
g[i] = std::max(g[i], f[i][j]);
}
printf("%d\n",g[t]);
return ;
}
END
【贪心优化dp决策】bzoj1571: [Usaco2009 Open]滑雪课Ski的更多相关文章
- [bzoj1571][Usaco2009 Open]滑雪课Ski
题目描述 Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪.很不幸,Bessie滑雪技术并不精湛. Bessie了解到,在滑雪场里,每天会提供S(0<=S<=100 ...
- bzoj千题计划156:bzoj1571: [Usaco2009 Open]滑雪课Ski
http://www.lydsy.com/JudgeOnline/problem.php?id=1571 DP不一定全部全状态转移 贪心的舍去一些不合法的反而更容易转移 在一定能力范围内,肯定滑雪所需 ...
- bzoj 1571: [Usaco2009 Open]滑雪课Ski【dp】
参考:https://blog.csdn.net/cgh_andy/article/details/52506738 没有get到什么重点的dp--做的莫名其妙 注意滑雪一个坡可以滑很多次 设f[i] ...
- BZOJ 1571: [Usaco2009 Open]滑雪课Ski
Description Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪.很不幸,Bessie滑雪技术并不精湛. Bessie了解到,在滑雪场里,每天会提供S(0<=S& ...
- BZOJ——1571: [Usaco2009 Open]滑雪课Ski
http://www.lydsy.com/JudgeOnline/problem.php?id=1571 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: ...
- 1571. [Usaco2009 Open]滑雪课Ski
传送门 可以想到 $dp$,设 $f[i][j]$ 表示当前等级为 $i$,时间为 $j$ 的最大滑雪次数 显然上课不会上让自己等级降低的课,所以第一维 $i$ 满足无后效性 然后直接枚举 $i,j$ ...
- P1571: [Usaco2009 Open]滑雪课Ski
DP. ; var t,s,n,i,j,m,l,a,c,d:longint; f,e:array[..,..maxn] of longint; q:array[..] of longint; g:ar ...
- 【BZOJ】1571: [Usaco2009 Open]滑雪课Ski
[算法]动态规划 [题解]yy出了O(1w log 1w)的算法. 将雪坡排序预处理出g[i]表示能力值为i的最短时长雪坡. 这样就可以定义work(t,c)表示时长t能力c的最多滑雪数量,work( ...
- [USACO2009 OPEN] 滑雪课 Ski Lessons
洛谷P2948 看到题目就觉得这是动规但一直没想到如何状态转移……看了别人的题解之后才有一些想法 f[i][j]:前i单位时间能力值为j可以滑的最多次数 lessons[i][j]:结束时间为i,获得 ...
随机推荐
- 阿里云物联网 .NET Core 客户端 | CZGL.AliIoTClient:3. 订阅Topic与响应Topic
文档目录: 说明 1. 连接阿里云物联网 2. IoT 客户端 3. 订阅Topic与响应Topic 4. 设备上报属性 4.1 上报位置信息 5. 设置设备属性 6. 设备事件上报 7. 服务调用 ...
- 基于nginx的配置网站密码认证
在nginx配置服务中,创建访问网站密码认证. 1)需要ngx_http_auth_basic_module模块 语法: Syntax: auth_basic string | off; Defaul ...
- File upload in ASP.NET Core web API
参考1:File upload in ASP.NET Core web API https://www.janaks.com.np/file-upload-asp-net-core-web-api/ ...
- kafka剖析(转)
Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Cloudera.Apache Storm.Spa ...
- JVM加载类的原理机制
在Java中,类装载器把一个类装入Java虚拟机中,要经过三个步骤来完成:装载.链接和初始化,其中链接又可以分成校验.准备.解析装载:查找和导入类或接口的二进制数据: 链接:执行下面的校验.准备和解析 ...
- ios 常用库
SwiftHTTP 网络请求库 SwiftyJSON json解析库 SnapKit 自动布局库 Kingfisher 图像加载库 WRCycleScr ...
- iOS常用的存储方式
在iOS App开发过程中经常需要操作一些需要持续性保留的数据,比如用户对于App的相关设置.需要在本地缓存的数据等等.本文针对OC中经常使用的一下存储方式做了个整理. 常用的存储工具/方式: NSU ...
- MDX之Case When用法
with member [Measures].[终端销售数量总计] as sum(ytd([日期].[年月].CurrentMember),[Measures].[终端销售数量]) member [M ...
- Rabbitmq~linux环境的部署
之前写过在windows环境上部署rabbitmq,这回介绍在centos上对这个消息中间件进行部署的过程 一 下载和解压 wget http://www.rabbitmq.com/releases ...
- c# 定时器 自动执行
//下面讲一个打开窗体定时执行按钮的东西 private void Form1_Load(object sender, EventArgs e) { System.Timers.Timer pTime ...