P1880 [NOI1995]石子合并


丢个地址就跑(关于四边形不等式复杂度是n方的证明)

嗯所以这题利用决策的单调性来减少k断点的枚举次数。具体看lyd书。这部分很生疏,但是我还是选择先不管了。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef double db;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,INF=0x3f3f3f3f;
int p[N][N],Fmin[N][N],Fmax[N][N],sum[N],a[N];
int n; int main(){//freopen("tmp.in","r",stdin);freopen("tmp.out","w",stdout);
read(n);
for(register int i=;i<=n;++i)a[i+n]=read(a[i]);
for(register int i=;i<(n<<);++i)sum[i]=sum[i-]+a[i],p[i][i]=i;
for(register int i=(n<<)-;i;--i){
for(register int j=i+;j<(n<<);++j){
Fmax[i][j]=_max(Fmax[i+][j],Fmax[i][j-])+sum[j]-sum[i-];Fmin[i][j]=INF;
for(register int k=p[i][j-];k<=p[i+][j];++k)
if(MIN(Fmin[i][j],Fmin[i][k]+Fmin[k+][j]+sum[j]-sum[i-]))p[i][j]=k;
if(!(Fmin[i][j]^INF))Fmin[i][j]=;
}
}
Fmin[][]=INF;
for(register int i=;i<=n;++i)MIN(Fmin[][],Fmin[i][i+n-]),MAX(Fmax[][],Fmax[i][i+n-]);
printf("%d\n%d\n",Fmin[][],Fmax[][]);
return ;
}

P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]的更多相关文章

  1. P1880 [NOI1995]石子合并 区间dp

    P1880 [NOI1995]石子合并 #include <bits/stdc++.h> using namespace std; ; const int inf = 0x3f3f3f3f ...

  2. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  3. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  4. P1880 [NOI1995]石子合并 区间dp+拆环成链

    思路 :一道经典的区间dp  唯一不同的时候 终点和起点相连  所以要拆环成链  只需要把1-n的数组在n+1-2*n复制一遍就行了 #include<bits/stdc++.h> usi ...

  5. CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】

    问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...

  6. Codevs 3002 石子归并 3(DP四边形不等式优化)

    3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...

  7. 区间dp+四边形不等式优化

    区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...

  8. 51nod 1022 石子归并 V2 —— DP四边形不等式优化

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限 ...

  9. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

随机推荐

  1. 数据挖掘之pandas

    sdata={'语文':89,'数学':96,'音乐':39,'英语':78,'化学':88} #字典向Series转化 @@ >>> studata=Series(sdata) & ...

  2. java中类型的隐式转换

    byte+byte=int,低级向高级是隐式类型转换,高级向低级必须强制类型转换,byte<char<short<int<long<float<double

  3. 【BZOJ】1003 Cards

    [解析]Burnside引理+背包dp+乘法逆元 [Analysis] 这道题卡了好久,就是没想懂置换跟着色是不一样的. 依据burnside引理.在一个置换群作用下不等价类的个数为每一个置换作用下不 ...

  4. python 基础 4.0 函数的一般形式及传参

    #/usr/bin/python #coding=utf-8 #@Time   :2017/10/23 15:58 #@Auther :liuzhenchuan #@File   :函数的一般形式.p ...

  5. tp框架知识 之(链接数据库和操作数据内容)

    框架有时会用到数据库的内容,在"ThinkPhp框架知识"的那篇随笔中提到过,现在这篇随笔详细的描述下. 一.链接数据库 (1)找到模块文件夹中的Conf文件夹,然后进行编写con ...

  6. 九度OJ 1005:Graduate Admission (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:5646 解决:1632 题目描述: It is said that in 2011, there are about 100 graduat ...

  7. 【题解】P4799[CEOI2015 Day2]世界冰球锦标赛

    [题解][P4799 CEOI2015 Day2]世界冰球锦标赛 发现买票顺序和答案无关,又发现\(n\le40\),又发现从后面往前面买可以通过\(M\)来和从前面往后面买的方案进行联系.可以知道是 ...

  8. B. Drazil and His Happy Friends

    这是 Codeforces Round #292 (Div. 2)的一道题,原题在这里,题意就是: 小明有n个男同学(编号为 0 ~ n-1)和m个女同学 (编号为 0 ~ m-1),小明要安排男女之 ...

  9. P3231 [HNOI2013]消毒

    P3231 [HNOI2013]消毒 二维覆盖我们已经很熟悉了 扩展到三维,枚举其中较小的一维,这里定义为$a$ 以$a$为关键字状压,$1$表示该面全选 剩下的面和二维覆盖一样二分图匹配 如果还没接 ...

  10. Linux (ubuntu和redhat) 常用命令及细节

    1.关闭防火墙(Ubuntu) sudo ufw disable 2.vi 拷贝   参考http://blog.sina.com.cn/s/blog_601331150100ecfr.html 一) ...