使用策略梯度解决离散action space问题。

一、导入包,定义hyper parameter

import gym
import tensorflow as tf
import numpy as np
from collections import deque #################hyper parameters################、
#discount factor
GAMMA = 0.95
LEARNING_RATE = 0.01

二、PolicyGradient Agent的构造函数:

1、设置问题的状态空间维度,动作空间维度;

2、序列采样的存储结构;

3、调用创建用于策略函数近似的神经网络的函数,tensorflow的session;初始或神经网络的weights和bias。

def __init__(self, env):
#self.time_step = 0
#state dimension
self.state_dim = env.observation_space.shape[0]
#action dimension
self.action_dim = env.action_space.n
#sample list
self.ep_obs, self.ep_as, self.ep_rs = [],[],[]
#create policy network
self.create_softmax_network() self.session = tf.InteractiveSession()
self.session.run(tf.global_variables_initializer())

三、创建神经网络:

这里使用交叉熵误差函数,使用神经网络计算损失函数的梯度。softmax输出层输出每个动作的概率。

tf.nn.sparse_softmax_cross_entropy_with_logits函数先对 logits 进行 softmax 处理得到归一化的概率,将lables向量进行one-hot处理,然后求logits和labels的交叉熵:

其中为label中的第i个值,为经softmax归一化输出的vector中的对应分量,由此可以看出,当分类越准确时,所对应的分量就会越接近于1,从而的值也就会越小。

因此,在这里可以得到很好的理解(我自己的理解):当在time-step-i时刻,策略网络输出概率向量若与采样到的time-step-i时刻的动作越相似,那么交叉熵会越小。最小化这个交叉熵误差也就能够使策略网络的决策越接近我们采样的动作。最后用交叉熵乘上对应time-step的reward,就将reward的大小引入损失函数,entropy*reward越大,神经网络调整参数时计算得到的梯度就会越偏向该方向。

    def create_softmax_network(self):
W1 = self.weight_variable([self.state_dim, 20])
b1 = self.bias_variable([20])
W2 = self.weight_variable([20, self.action_dim])
b2 = self.bias_variable([self.action_dim]) #input layer
self.state_input = tf.placeholder(tf.float32, [None, self.state_dim])
self.tf_acts = tf.placeholder(tf.int32, [None, ], name='actions_num')
self.tf_vt = tf.placeholder(tf.float32, [None, ], name="actions_value")
#hidden layer
h_layer = tf.nn.relu(tf.matmul(self.state_input,W1) + b1)
#softmax layer
self.softmax_input = tf.matmul(h_layer, W2) + b2
#softmax output
self.all_act_prob = tf.nn.softmax(self.softmax_input, name='act_prob')
#cross entropy loss function
self.neg_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.softmax_input,labels=self.tf_acts)
self.loss = tf.reduce_mean(self.neg_log_prob * self.tf_vt) # reward guided loss
self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss) def weight_variable(self, shape):
initial = tf.truncated_normal(shape) #truncated normal distribution
return tf.Variable(initial) def bias_variable(self, shape):
initial = tf.constant(0.01, shape=shape)
return tf.Variable(initial)

四、序列采样:

def store_transition(self, s, a, r):
self.ep_obs.append(s)
self.ep_as.append(a)
self.ep_rs.append(r)

五、模型学习:

通过蒙特卡洛完整序列采样,对神经网络进行调整。

def learn(self):
#evaluate the value of all states in present episode
discounted_ep_rs = np.zeros_like(self.ep_rs)
running_add = 0
for t in reversed(range(0, len(self.ep_rs))):
running_add = running_add * GAMMA + self.ep_rs[t]
discounted_ep_rs[t] = running_add
#normalization
discounted_ep_rs -= np.mean(discounted_ep_rs)
discounted_ep_rs /= np.std(discounted_ep_rs) # train on episode
self.session.run(self.train_op, feed_dict={
self.state_input: np.vstack(self.ep_obs),
self.tf_acts: np.array(self.ep_as),
self.tf_vt: discounted_ep_rs,
}) self.ep_obs, self.ep_as, self.ep_rs = [], [], [] # empty episode data

六、训练:

# Hyper Parameters
ENV_NAME = 'CartPole-v0'
EPISODE = 3000 # Episode limitation
STEP = 3000 # Step limitation in an episode
TEST = 10 # The number of experiment test every 100 episode def main():
# initialize OpenAI Gym env and dqn agent
env = gym.make(ENV_NAME)
agent = Policy_Gradient(env) for episode in range(EPISODE):
# initialize task
state = env.reset()
# Train
for step in range(STEP):
action = agent.choose_action(state) # e-greedy action for train
#take action
next_state,reward,done,_ = env.step(action)
#sample
agent.store_transition(state, action, reward)
state = next_state
if done:
#print("stick for ",step, " steps")
#model learning after a complete sample
agent.learn()
break # Test every 100 episodes
if episode % 100 == 0:
total_reward = 0
for i in range(TEST):
state = env.reset()
for j in range(STEP):
env.render()
action = agent.choose_action(state) # direct action for test
state,reward,done,_ = env.step(action)
total_reward += reward
if done:
break
ave_reward = total_reward/TEST
print ('episode: ',episode,'Evaluation Average Reward:',ave_reward) if __name__ == '__main__':
main()

reference:

https://www.cnblogs.com/pinard/p/10137696.html

https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/policy_gradient.py

强化学习_PolicyGradient(策略梯度)_代码解析的更多相关文章

  1. 强化学习(十三) 策略梯度(Policy Gradient)

    在前面讲到的DQN系列强化学习算法中,我们主要对价值函数进行了近似表示,基于价值来学习.这种Value Based强化学习方法在很多领域都得到比较好的应用,但是Value Based强化学习方法也有很 ...

  2. 强化学习_Deep Q Learning(DQN)_代码解析

    Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import n ...

  3. java自定义注解学习(三)_注解解析及应用

    上篇文章已经介绍了注解的基本构成信息.这篇文章,主要介绍注解的解析.毕竟你只声明了注解,是没有用的.需要进行解析.主要就是利用反射机制在运行时进行查看和利用这些信息 常用方法汇总 在Class.Fie ...

  4. 强化学习(十六) 深度确定性策略梯度(DDPG)

    在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Cri ...

  5. 强化学习(十四) Actor-Critic

    在强化学习(十三) 策略梯度(Policy Gradient)中,我们讲到了基于策略(Policy Based)的强化学习方法的基本思路,并讨论了蒙特卡罗策略梯度reinforce算法.但是由于该算法 ...

  6. 强化学习(五)—— 策略梯度及reinforce算法

    1 概述 在该系列上一篇中介绍的基于价值的深度强化学习方法有它自身的缺点,主要有以下三点: 1)基于价值的强化学习无法很好的处理连续空间的动作问题,或者时高维度的离散动作空间,因为通过价值更新策略时是 ...

  7. 强化学习-学习笔记14 | 策略梯度中的 Baseline

    本篇笔记记录学习在 策略学习 中使用 Baseline,这样可以降低方差,让收敛更快. 14. 策略学习中的 Baseline 14.1 Baseline 推导 在策略学习中,我们使用策略网络 \(\ ...

  8. 【论文笔记】AutoML for MCA on Mobile Devices——论文解读与代码解析

    理论部分 方法介绍 本节将详细介绍AMC的算法流程.AMC旨在自动地找出每层的冗余参数. AMC训练一个强化学习的策略,对每个卷积层会给出其action(即压缩率),然后根据压缩率进行裁枝.裁枝后,A ...

  9. 强化学习论文(Scalable agent alignment via reward modeling: a research direction)

     原文地址: https://arxiv.org/pdf/1811.07871.pdf ======================================================== ...

随机推荐

  1. TP5之发送邮件

    1.下载扩展,vendor\phpmailer 文件结构: 2.话不多说,上代码    注意点: ·   需要提前开通对应邮箱的SMTP服务 ·  $mail->Host = "  & ...

  2. Multi-University板块

    力争补完所有 Multi-University 的"水题",任重而道远. HDU2819[二分匹配与矩阵性质] HDU2844[背包问题(二进制优化)] HDU2824[欧拉函数] ...

  3. Lightoj 1098【数学/玄学】

    题意: 对于每个数求除1和本身的约数和,然后求前n个数的所有这种约数的和: 思路: 首先可以知道对于约数考虑就好了, 对于1-n的约数,n/2-1(减1是因为2不算啊)就是约数为2出现过的次数 如果n ...

  4. ThinkPHP3.2.3学习笔记6---专题---数据分页

    http://document.thinkphp.cn/manual_3_2.html#data_page thinkphp3.2.3中分类的功能调用的文件$THINKPHP_HOME/ThinkPH ...

  5. String.Format 大全

    0.0的格式化 string.Format("{0:8D8}", 3)//第一个8表示空8个位置,后一个8表示用0填写最多8位数据 1.格式化货币(跟系统的环境有关,中文系统默认格 ...

  6. MySql 5.6 遇到的一些问题

    1. 卸载5.5之后,使用 mysql installer 时,没法设定 data directory .  最后再次删除mysql installer之后,使系统干净后才能重新安装, 然后界面出现了 ...

  7. Flutter中的可滚动列表组件-PageView

    PageVIew,可滚动的视图列表组件,而且每一个子组件的大小都和视图窗口大小一样. 属性: controller -> PageController 用于控制视图页面滚动到的位置 childr ...

  8. Android Activity生命周期(转)

    转自 http://blog.csdn.net/android_tutor/article/details/5772285

  9. Java语言和虚拟机规范下载

  10. Devc++贪吃蛇

    使用Devc++写的一个简单版贪吃蛇程序,不过,在未配置之前,是不包含图形库的,所以需要自己配置新的环境 ----------------------------------------------- ...