https://www.cs.toronto.edu/~hinton/

Geoffrey E. Hinton

I am an Engineering Fellow at Google where I manage Brain Team Toronto, which is a new part of the Google Brain Team and is located at Google's Toronto office at 111 Richmond Street. Brain Team Toronto does basic research on ways to improve neural network learning techniques. I also do pro bono work as the Chief Scientific Adviser of the new Vector Institute. I am also an Emeritus Professor at the University of Toronto.

Department of Computer Science   email: geoffrey [dot] hinton [at] gmail [dot] com
University of Toronto   voice: send email
6 King's College Rd.   fax: scan and send email
Toronto, Ontario    
 

Information for prospective students:
I advise interns at Brain team Toronto. 
I also advise some of the residents in the Google Brain Residents Program.
I will not be taking any more visiting students, summer students or visitors at the University of Toronto. I will not be the sole advisor of any new graduate students, but I may co-advise a few graduate students with Prof. Roger Grosse or soon to be Prof. Jimmy Ba.

News 
Results of the 2012 competition to recognize 1000 different types of object
How George Dahl won the competition to predict the activity of potential drugs
How Vlad Mnih won the competition to predict job salaries from job advertisements
How Laurens van der Maaten won the competition to visualize a dataset of potential drugs

Using big data to make people vote against their own interests 
A possible motive for making people vote against their own interests

Basic papers on deep learning

Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554. [pdf
Movies of the neural network generating and recognizing digits

Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.
[full paper] [supporting online material (pdf)] [Matlab code]

 LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]

Papers on deep learning without much math

Hinton, G. E. (2007)
To recognize shapes, first learn to generate images
In P. Cisek, T. Drew and J. Kalaska (Eds.)
Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier. [pdf of final draft]

Hinton, G. E. (2007)
Learning Multiple Layers of Representation.
Trends in Cognitive Sciences, Vol. 11, pp 428-434. [pdf]

Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]

A practical guide to training restricted Boltzmann machines
[pdf]

Recent Papers

 Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017)
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
arXiv preprint arXiv:1701.06538 [pdf]

 Ba, J. L., Hinton, G. E., Mnih, V., Leibo, J. Z. and Ionescu, C. (2016)
Using Fast Weights to Attend to the Recent Past
{\it NIPS-2016}, arXiv preprint arXiv:1610.06258v2 [pdf]

 Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016)
Layer normalization
{\it Deep Learning Symposium, NIPS-2016}, arXiv preprint arXiv:1607.06450 [pdf]

 Ali Eslami, S. M., Nicolas Heess, N., Theophane Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K. and Hinton, G. E. (2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
{\it NIPS-2016}, arXiv preprint arXiv:1603.08575v3 [pdf]

LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]

Hinton, G. E., Vinyals, O., and Dean, J. (2015)
Distilling the knowledge in a neural network
arXiv preprint arXiv:1503.02531 [pdf]

Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. E. (2014)
Grammar as a foreign language.
arXiv preprint arXiv:1412.7449 [pdf]

Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014)
Dropout: A simple way to prevent neural networks from overfitting
The Journal of Machine Learning Research, 15(1), pp 1929-1958. [pdf]

Srivastava, N., Salakhutdinov, R. R. and Hinton, G. E. (2013)
Modeling Documents with a Deep Boltzmann Machine
arXiv preprint arXiv:1309.6865 [pdf]

Graves, A., Mohamed, A. and Hinton, G. E. (2013)
Speech Recognition with Deep Recurrent Neural Networks
In IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP 2013) Vancouver, 2013. [pdf]

Joseph Turian's map of 2500 English words produced by using t-SNE on the word feature vectors learned by Collobert & Weston, ICML 2008

Doing analogies by using vector algebra on word embeddings

Geoffrey E. Hinton的更多相关文章

  1. Yann LeCun, Geoffrey E. Hinton, and Yoshua Bengio

  2. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  3. 反向传播(BP)算法

    著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源 ...

  4. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  5. 学习Data Science/Deep Learning的一些材料

    原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...

  6. deep learning 的综述

    从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...

  7. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  8. [OpenCV] Face Detection

    即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿 ...

  9. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

随机推荐

  1. iOS开发之手势gesture详解(二)

    与其他用户界面控件交互 UIControl子类会覆盖parentView的gesture.例如当用户点击UIButton时,UIButton会接受触摸事件,它的parentView不会接收到.这仅适用 ...

  2. OpenOPC

    客户端连接OpenOPC Gateway import OpenOPC gateway='192.168.1.90' opchost='testbox' opcserv='KEPware.KEPSer ...

  3. 牛客网 Wannafly挑战赛5 B.可编程拖拉机比赛-ceil()函数+floor()函数

    可编程拖拉机比赛 时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 65536K,其他语言131072K64bit IO Format: %lld 题目描述 “这个比赛,归根结底就是控制一 ...

  4. lms111,rplidar 方向和起始角

    上图中,从X反方向是开始,按顺时针方向增加,实际运转方向也为顺时针方向. lms111:正放时:数据按逆时针依次输出.(起始----->结束) 北阳:正放时:数据按逆时针依次输出

  5. OpenLDAP给我的启发

    首先这篇文章没什么技术性,但亮点是:我会给广大运维同行提一点建议,这个一点仅仅是一点,而不是很多点. 年前计划深度掌握一些诸如:Jenkins.Gitlab.ELK.k8s等的软件,但学着学着总是想学 ...

  6. IntelliJ IDEA重构技巧收集

    https://segmentfault.com/a/1190000002488608(重命名文件) http://www.jianshu.com/p/ab298b46bf50(快速生成方法) htt ...

  7. apk 签名

    给apk签名步骤:(比方apk名称是EasyMsg.apk) (1)将EasyMsg.apk包后缀改为zip, EasyMsg.zip (2)删除EasyMsg.zip文件包中的META-INF目录, ...

  8. 数据结构与算法系列----AC自己主动机

    一:概念 首先简要介绍一下AC自己主动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之中的一个.一个常见的样例就是给出n个单词,再给出一段 ...

  9. mvc用UpdateModel报错

    项目中使用UpdateModel时报错:未能更新类型“XXXXXX”的模型. 原因如下:表单Post时,有的参数为空,如a=1&b=2&=3.

  10. Linux安装Java/Maven

    所需文件:jdk 下载 安装Java INSTALL_PATH=/opt/soft TAR_FILE=/mnt/d/resources/soft/jdk-8u152-linux-x64.tar.gz ...