Geoffrey E. Hinton
https://www.cs.toronto.edu/~hinton/
Geoffrey E. Hinton
I am an Engineering Fellow at Google where I manage Brain Team Toronto, which is a new part of the Google Brain Team and is located at Google's Toronto office at 111 Richmond Street. Brain Team Toronto does basic research on ways to improve neural network learning techniques. I also do pro bono work as the Chief Scientific Adviser of the new Vector Institute. I am also an Emeritus Professor at the University of Toronto.
Department of Computer Science | email: geoffrey [dot] hinton [at] gmail [dot] com | |||
University of Toronto | voice: send email | |||
6 King's College Rd. | fax: scan and send email | |||
Toronto, Ontario | ||||
Information for prospective students:
I advise interns at Brain team Toronto.
I also advise some of the residents in the Google Brain Residents Program.
I will not be taking any more visiting students, summer students or visitors at the University of Toronto. I will not be the sole advisor of any new graduate students, but I may co-advise a few graduate students with Prof. Roger Grosse or soon to be Prof. Jimmy Ba.
News
Results of the 2012 competition to recognize 1000 different types of object
How George Dahl won the competition to predict the activity of potential drugs
How Vlad Mnih won the competition to predict job salaries from job advertisements
How Laurens van der Maaten won the competition to visualize a dataset of potential drugs
Using big data to make people vote against their own interests
A possible motive for making people vote against their own interests
Basic papers on deep learning
Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554. [pdf]
Movies of the neural network generating and recognizing digits
Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.
[full paper] [supporting online material (pdf)] [Matlab code]
LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]
Papers on deep learning without much math
Hinton, G. E. (2007)
To recognize shapes, first learn to generate images
In P. Cisek, T. Drew and J. Kalaska (Eds.)
Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier. [pdf of final draft]
Hinton, G. E. (2007)
Learning Multiple Layers of Representation.
Trends in Cognitive Sciences, Vol. 11, pp 428-434. [pdf]
Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]
A practical guide to training restricted Boltzmann machines
[pdf]
Recent Papers
Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017)
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
arXiv preprint arXiv:1701.06538 [pdf]
Ba, J. L., Hinton, G. E., Mnih, V., Leibo, J. Z. and Ionescu, C. (2016)
Using Fast Weights to Attend to the Recent Past
{\it NIPS-2016}, arXiv preprint arXiv:1610.06258v2 [pdf]
Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016)
Layer normalization
{\it Deep Learning Symposium, NIPS-2016}, arXiv preprint arXiv:1607.06450 [pdf]
Ali Eslami, S. M., Nicolas Heess, N., Theophane Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K. and Hinton, G. E. (2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
{\it NIPS-2016}, arXiv preprint arXiv:1603.08575v3 [pdf]
LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]
Hinton, G. E., Vinyals, O., and Dean, J. (2015)
Distilling the knowledge in a neural network
arXiv preprint arXiv:1503.02531 [pdf]
Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. E. (2014)
Grammar as a foreign language.
arXiv preprint arXiv:1412.7449 [pdf]
Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014)
Dropout: A simple way to prevent neural networks from overfitting
The Journal of Machine Learning Research, 15(1), pp 1929-1958. [pdf]
Srivastava, N., Salakhutdinov, R. R. and Hinton, G. E. (2013)
Modeling Documents with a Deep Boltzmann Machine
arXiv preprint arXiv:1309.6865 [pdf]
Graves, A., Mohamed, A. and Hinton, G. E. (2013)
Speech Recognition with Deep Recurrent Neural Networks
In IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP 2013) Vancouver, 2013. [pdf]
Doing analogies by using vector algebra on word embeddings
Geoffrey E. Hinton的更多相关文章
- Yann LeCun, Geoffrey E. Hinton, and Yoshua Bengio
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 反向传播(BP)算法
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源 ...
- (转) Deep Learning Resources
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...
- 学习Data Science/Deep Learning的一些材料
原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- Deep Learning(深度学习)学习笔记整理
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...
- [OpenCV] Face Detection
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿 ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- es6总结 (五)--函数扩展
- 2017 UESTC Training for Data Structures-解题报告
题目链接:http://acm.uestc.edu.cn/#/contest/show/155 这个数据结构训练主要针对线段树,树转数组和并查集.比较适合刚入门数据结构的同学. 注意,因为后面题的代码 ...
- FileUtils删除文件的工具类
前提是知道文件在哪个文件夹下面然后到文件夹下面删除文件,如果文件夹也需要传参数需要对下面方法进行改造. ( 需要借助于commons-io.jar和ResourceUtils.java ) 1.De ...
- MSB与LSB Big Endian Little Endian
Most Significant Bit, Last(Least) Significant Bit 最高有效位(MSB) 指二进制中最高值的比特.在16比特的数字音频中,其第1个比特便对16bit的字 ...
- vscode golang配置说明
一.vscode-go插件安装 go 1.10.2 https://golang.org/dl/ 需要墙 vscode 1.23.1 https://code.visualstudio.com/ vs ...
- python,django,mysql学习之环境安装配置
参考:https://docs.djangoproject.com/en/1.6/intro/tutorial01/ http://rainyang.blog.51cto.com/469543/115 ...
- react-highcharts
import ReactHighcharts from'react-highcharts'; class SummaryLeft extends Component { render () {var ...
- facebook面试题【转】
1. 给两个类A和Bclass A {public void foo (A a) { ...}}class B extends A {public void foo (B b) { ...}}问这么写 ...
- luogu P1103 书本整理
题目描述 Frank是一个非常喜爱整洁的人.他有一大堆书和一个书架,想要把书放在书架上.书架可以放下所有的书,所以Frank首先将书按高度顺序排列在书架上.但是Frank发现,由于很多书的宽度不同,所 ...
- java webservice wsimport 无法将名称 'soapenc:Array' 解析为 'type definition' 组件 时对应的解决方法
(一):代码如下: package com.enso.uploaddata; import org.apache.axis.client.Call; import org.apache.axis.cl ...