Geoffrey E. Hinton
https://www.cs.toronto.edu/~hinton/
Geoffrey E. Hinton
I am an Engineering Fellow at Google where I manage Brain Team Toronto, which is a new part of the Google Brain Team and is located at Google's Toronto office at 111 Richmond Street. Brain Team Toronto does basic research on ways to improve neural network learning techniques. I also do pro bono work as the Chief Scientific Adviser of the new Vector Institute. I am also an Emeritus Professor at the University of Toronto.
| Department of Computer Science | email: geoffrey [dot] hinton [at] gmail [dot] com | |||
| University of Toronto | voice: send email | |||
| 6 King's College Rd. | fax: scan and send email | |||
| Toronto, Ontario | ||||
Information for prospective students:
I advise interns at Brain team Toronto.
I also advise some of the residents in the Google Brain Residents Program.
I will not be taking any more visiting students, summer students or visitors at the University of Toronto. I will not be the sole advisor of any new graduate students, but I may co-advise a few graduate students with Prof. Roger Grosse or soon to be Prof. Jimmy Ba.
News
Results of the 2012 competition to recognize 1000 different types of object
How George Dahl won the competition to predict the activity of potential drugs
How Vlad Mnih won the competition to predict job salaries from job advertisements
How Laurens van der Maaten won the competition to visualize a dataset of potential drugs
Using big data to make people vote against their own interests
A possible motive for making people vote against their own interests
Basic papers on deep learning
Hinton, G. E., Osindero, S. and Teh, Y. (2006)
A fast learning algorithm for deep belief nets.
Neural Computation, 18, pp 1527-1554. [pdf]
Movies of the neural network generating and recognizing digits
Hinton, G. E. and Salakhutdinov, R. R. (2006)
Reducing the dimensionality of data with neural networks.
Science, Vol. 313. no. 5786, pp. 504 - 507, 28 July 2006.
[full paper] [supporting online material (pdf)] [Matlab code]
LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]
Papers on deep learning without much math
Hinton, G. E. (2007)
To recognize shapes, first learn to generate images
In P. Cisek, T. Drew and J. Kalaska (Eds.)
Computational Neuroscience: Theoretical Insights into Brain Function. Elsevier. [pdf of final draft]
Hinton, G. E. (2007)
Learning Multiple Layers of Representation.
Trends in Cognitive Sciences, Vol. 11, pp 428-434. [pdf]
Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]
A practical guide to training restricted Boltzmann machines
[pdf]
Recent Papers
Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017)
Outrageously large neural networks: The sparsely-gated mixture-of-experts layer
arXiv preprint arXiv:1701.06538 [pdf]
Ba, J. L., Hinton, G. E., Mnih, V., Leibo, J. Z. and Ionescu, C. (2016)
Using Fast Weights to Attend to the Recent Past
{\it NIPS-2016}, arXiv preprint arXiv:1610.06258v2 [pdf]
Ba, J. L., Kiros, J. R. and Hinton, G. E. (2016)
Layer normalization
{\it Deep Learning Symposium, NIPS-2016}, arXiv preprint arXiv:1607.06450 [pdf]
Ali Eslami, S. M., Nicolas Heess, N., Theophane Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K. and Hinton, G. E. (2016)
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
{\it NIPS-2016}, arXiv preprint arXiv:1603.08575v3 [pdf]
LeCun, Y., Bengio, Y. and Hinton, G. E. (2015)
Deep Learning
Nature, Vol. 521, pp 436-444. [pdf]
Hinton, G. E., Vinyals, O., and Dean, J. (2015)
Distilling the knowledge in a neural network
arXiv preprint arXiv:1503.02531 [pdf]
Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., & Hinton, G. E. (2014)
Grammar as a foreign language.
arXiv preprint arXiv:1412.7449 [pdf]
Hinton, G. E. (2014)
Where do features come from?.
Cognitive Science, Vol. 38(6), pp 1078-1101. [pdf]
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014)
Dropout: A simple way to prevent neural networks from overfitting
The Journal of Machine Learning Research, 15(1), pp 1929-1958. [pdf]
Srivastava, N., Salakhutdinov, R. R. and Hinton, G. E. (2013)
Modeling Documents with a Deep Boltzmann Machine
arXiv preprint arXiv:1309.6865 [pdf]
Graves, A., Mohamed, A. and Hinton, G. E. (2013)
Speech Recognition with Deep Recurrent Neural Networks
In IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP 2013) Vancouver, 2013. [pdf]
Doing analogies by using vector algebra on word embeddings
Geoffrey E. Hinton的更多相关文章
- Yann LeCun, Geoffrey E. Hinton, and Yoshua Bengio
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 反向传播(BP)算法
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:刘皮皮链接:https://www.zhihu.com/question/24827633/answer/29120394来源 ...
- (转) Deep Learning Resources
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...
- 学习Data Science/Deep Learning的一些材料
原文发布于我的微信公众号: GeekArtT. 从CFA到如今的Data Science/Deep Learning的学习已经有一年的时间了.期间经历了自我的兴趣.擅长事务的探索和试验,有放弃了的项目 ...
- deep learning 的综述
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自 ...
- Deep Learning(深度学习)学习笔记整理
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...
- [OpenCV] Face Detection
即将进入涉及大量数学知识的阶段,先读下“别人家”的博文放松一下. 读罢该文,基本能了解面部识别领域的整体状况. 后生可畏. 结尾的Google Facenet中的2亿数据集,仿佛隐约听到:“你们都玩儿 ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
随机推荐
- poj 1573(搜索)
Robot Motion Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12351 Accepted: 5982 Des ...
- AC日记——[SDOI2015]星际战争 洛谷 P3324
题目描述 3333年,在银河系的某星球上,X军团和Y军团正在激烈地作战. 在战斗的某一阶段,Y军团一共派遣了N个巨型机器人进攻X军团的阵地,其中第i个巨型机器人的装甲值为Ai.当一个巨型机器人的装甲值 ...
- Codeforces 620E New Year Tree(线段树+位运算)
题目链接 New Year Tree 考虑到$ck <= 60$,那么用位运算统计颜色种数 对于每个点,重新标号并算出他对应的进和出的时间,然后区间更新+查询. 用线段树来维护. #includ ...
- SQLite的sqlite_sequence表
SQLite的sqlite_sequence表 sqlite_sequence表也是SQLite的系统表.该表用来保存其他表的RowID的最大值.数据库被创建时,sqlite_sequence表会 ...
- 如何轻松的把图片导入execl表格中
在项目中有时候会遇到往数据库中导数据的时候,往往需要把图片也一起导入execl表格中,那怎么才能把图片一块导入至execl中呢?那么今天我们就来看看怎么实现吧! 如何实现?今天我们就来用jxl和poi ...
- Extjs grid增加或删除列后记住滚动条的位置
IE下验证好使. { text: "Del", icon: 'Scripts/Ext/resources/images/icons/application_form_delete. ...
- 纯CSS3美化radio和checkbox
如题,主要通过CSS3来实现将radio和checkbox美化的效果.可是兼容性并非非常好,PC端仅仅支持chrome浏览器(IE和Firefox測试不行,其它没有很多其它測试).然后微信端和QQ端訪 ...
- 全方位绕过软WAF攻略
0×00 前言 现在软waf较为多,就在今年夏天苦逼挖洞的日子里经常遇到360主机卫士,安全狗,云锁之类的软waf进行拦截,经常碰到如下拦截提示: 看到以上三个拦截提示就让人头疼不已,欲罢不能. so ...
- dom4j的xpath查找xml的指定节点
递归遍历所有节点http://blog.csdn.net/sidihuo/article/details/47318723 获取Document SAXReader saxReader = new S ...
- mysql select last_insert_id()函数返回的值
mysql)); 创建表j 插入数据 mysql> insert into j(name) values('wanggiqpg'); Query OK, row affected (0.00 s ...