Matrix and Determinant

Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn

Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case of a 2 × 2 matrix the determinant may be defined as:

Similarly, for a 3 × 3 matrix A, its determinant is:

See more information about determinant here.

Rank of Matrix

The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).

A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).

The reduce step can be found in this article.

Eigenvalues and Eigenvectors

For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying

are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.

How to Calculate

The eigenvalues of C are then the solutions of

|(C − λIM)| = 0,

where |S| denotes the determinant of a square matrix S.

For each value of  λ, we can calculate the corresponding eigenvector x through solving the following equation:

This article gives a specific example of the calculating process.

Matrix Decompositions

Matrix diagonalization theorem

Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order

If the eigenvalues are distinct, then this decomposition is unique.

Symmetric diagonalization theorem

Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition

S = QΛQT

where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.

Further, all entries of Q are real and we have Q−1 = QT.

Singular value decompositions

Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form

where

1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.

2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.

3. 

The values σi are referred to as the singular values of C.

Here is the illustration of the singular-value decomposition.

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章

  1. Linear Algebra From Data

    Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 奇异值分解(We Recommend a Singular Value Decomposition)

    奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...

  4. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  5. 【转】奇异值分解(We Recommend a Singular Value Decomposition)

    文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...

  6. [转]奇异值分解(We Recommend a Singular Value Decomposition)

    原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...

  7. [转载]We Recommend a Singular Value Decomposition

    原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...

  8. Python Linear algebra

    Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...

  9. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

随机推荐

  1. C#串口扫描枪的简单实现

    原文:C#串口扫描枪的简单实现 串口扫描枪的简单实现 基于串口通讯的扫描枪的实现,主要借助SerialPort类,表示串行端口资源.实现很简单: 工具:usb转RS232转接头/个,扫描枪/套, 扫描 ...

  2. P2255 [USACO14JAN]记录奥林比克Recording the M…

    P2255 [USACO14JAN]记录奥林比克Recording the M… 题目描述 Being a fan of all cold-weather sports (especially tho ...

  3. ECMAScript5.1

    http://lzw.me/pages/ecmascript/  ECMAScript5.1中文版 https://msdn.microsoft.com/zh-cn/library/dn656907. ...

  4. 史上最权威的 Activiti 框架学习

        Activiti5 是 由 Alfresco 软件在 2010 年 5 月 17 日发布的业务流程管理( BPM) 框架,它是覆盖了业务流程管理.工作流.服务协作等领域 的一个开源的.灵活的. ...

  5. C#入门篇5-8:流程控制语句 break语句

    #region break语句 public class Breakapp { public static void Fun1() { //计算1+2+…+100的求和程序,打印显示每次循环计算的结果 ...

  6. 1、IOS学习计划

    2015年12月10日 -- 2015年12月27日(一共3个周末,12个个工作日) 1.斯坦福公开课(IOS7应用开发) 一共18节课程,通过视频和demo建立感觉 2.千峰的OC课程 一共25节课 ...

  7. Halcon18 Linux 下载

    Halcon18 Linux下载地址:http://www.211xun.com/download_page_14.html HALCON 18 是一套机器视觉图像处理库,由一千多个算子以及底层的数据 ...

  8. 使用CORS解决flask前端页面跨域问题

    from flask import Flask from flask_cors import CORS app = Flask(__name__) CORS(app) @app.route(" ...

  9. android TranslateAnimation动画执行时的坐标获取。

    android 的Tween动画并不会改变控件的属性值,比如以下测试片段: 定义一个从屏幕右边进入,滚动到屏幕左边消失的一个TranslateAnimation动画: <?xml version ...

  10. get_class 方法

    get_class 返回对象的类名 get_class (PHP 4, PHP 5) get_class — 返回对象的类名 说明 string get_class ([ object $obj ] ...