[Math Review] Linear Algebra for Singular Value Decomposition (SVD)
Matrix and Determinant
Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn
Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.
In the case of a 2 × 2 matrix the determinant may be defined as:
Similarly, for a 3 × 3 matrix A, its determinant is:
See more information about determinant here.
Rank of Matrix
The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).
A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).
The reduce step can be found in this article.
Eigenvalues and Eigenvectors
For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying
are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.
How to Calculate
The eigenvalues of C are then the solutions of
|(C − λIM)| = 0,
where |S| denotes the determinant of a square matrix S.
For each value of λ, we can calculate the corresponding eigenvector x through solving the following equation:
This article gives a specific example of the calculating process.
Matrix Decompositions
Matrix diagonalization theorem
Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition
where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order
If the eigenvalues are distinct, then this decomposition is unique.
Symmetric diagonalization theorem
Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition
S = QΛQT
where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.
Further, all entries of Q are real and we have Q−1 = QT.
Singular value decompositions
Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form
where
1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.
2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.
3.
The values σi are referred to as the singular values of C.
Here is the illustration of the singular-value decomposition.
[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章
- Linear Algebra From Data
Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 奇异值分解(We Recommend a Singular Value Decomposition)
奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...
- We Recommend a Singular Value Decomposition
We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...
- 【转】奇异值分解(We Recommend a Singular Value Decomposition)
文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...
- [转]奇异值分解(We Recommend a Singular Value Decomposition)
原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...
- [转载]We Recommend a Singular Value Decomposition
原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...
- Python Linear algebra
Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
随机推荐
- C#串口扫描枪的简单实现
原文:C#串口扫描枪的简单实现 串口扫描枪的简单实现 基于串口通讯的扫描枪的实现,主要借助SerialPort类,表示串行端口资源.实现很简单: 工具:usb转RS232转接头/个,扫描枪/套, 扫描 ...
- P2255 [USACO14JAN]记录奥林比克Recording the M…
P2255 [USACO14JAN]记录奥林比克Recording the M… 题目描述 Being a fan of all cold-weather sports (especially tho ...
- ECMAScript5.1
http://lzw.me/pages/ecmascript/ ECMAScript5.1中文版 https://msdn.microsoft.com/zh-cn/library/dn656907. ...
- 史上最权威的 Activiti 框架学习
Activiti5 是 由 Alfresco 软件在 2010 年 5 月 17 日发布的业务流程管理( BPM) 框架,它是覆盖了业务流程管理.工作流.服务协作等领域 的一个开源的.灵活的. ...
- C#入门篇5-8:流程控制语句 break语句
#region break语句 public class Breakapp { public static void Fun1() { //计算1+2+…+100的求和程序,打印显示每次循环计算的结果 ...
- 1、IOS学习计划
2015年12月10日 -- 2015年12月27日(一共3个周末,12个个工作日) 1.斯坦福公开课(IOS7应用开发) 一共18节课程,通过视频和demo建立感觉 2.千峰的OC课程 一共25节课 ...
- Halcon18 Linux 下载
Halcon18 Linux下载地址:http://www.211xun.com/download_page_14.html HALCON 18 是一套机器视觉图像处理库,由一千多个算子以及底层的数据 ...
- 使用CORS解决flask前端页面跨域问题
from flask import Flask from flask_cors import CORS app = Flask(__name__) CORS(app) @app.route(" ...
- android TranslateAnimation动画执行时的坐标获取。
android 的Tween动画并不会改变控件的属性值,比如以下测试片段: 定义一个从屏幕右边进入,滚动到屏幕左边消失的一个TranslateAnimation动画: <?xml version ...
- get_class 方法
get_class 返回对象的类名 get_class (PHP 4, PHP 5) get_class — 返回对象的类名 说明 string get_class ([ object $obj ] ...