Matrix and Determinant

Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn

Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case of a 2 × 2 matrix the determinant may be defined as:

Similarly, for a 3 × 3 matrix A, its determinant is:

See more information about determinant here.

Rank of Matrix

The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).

A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).

The reduce step can be found in this article.

Eigenvalues and Eigenvectors

For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying

are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.

How to Calculate

The eigenvalues of C are then the solutions of

|(C − λIM)| = 0,

where |S| denotes the determinant of a square matrix S.

For each value of  λ, we can calculate the corresponding eigenvector x through solving the following equation:

This article gives a specific example of the calculating process.

Matrix Decompositions

Matrix diagonalization theorem

Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order

If the eigenvalues are distinct, then this decomposition is unique.

Symmetric diagonalization theorem

Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition

S = QΛQT

where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.

Further, all entries of Q are real and we have Q−1 = QT.

Singular value decompositions

Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form

where

1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.

2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.

3. 

The values σi are referred to as the singular values of C.

Here is the illustration of the singular-value decomposition.

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章

  1. Linear Algebra From Data

    Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 奇异值分解(We Recommend a Singular Value Decomposition)

    奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...

  4. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  5. 【转】奇异值分解(We Recommend a Singular Value Decomposition)

    文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...

  6. [转]奇异值分解(We Recommend a Singular Value Decomposition)

    原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...

  7. [转载]We Recommend a Singular Value Decomposition

    原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...

  8. Python Linear algebra

    Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...

  9. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

随机推荐

  1. 使用Visual Studio建立报表--C#

    原文:使用Visual Studio建立报表--C# 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/qq_23893313/article/deta ...

  2. Python接口测试之封装requests

    首先安装requests库: pip install requests test_requests.py 首先在TestRequest类中封装get与post方法, import requests i ...

  3. centos使用--vsftpd配置

    目录 1 在服务器配置FTP服务 1.1 在root权限下,通过如下命令安装Vsftp(以CentOS系统为例): 1.2 在启动vsftpd服务之前,需要登录云服务器修改配置文件,禁用匿名登录. 1 ...

  4. 1、IOS学习计划

    2015年12月10日 -- 2015年12月27日(一共3个周末,12个个工作日) 1.斯坦福公开课(IOS7应用开发) 一共18节课程,通过视频和demo建立感觉 2.千峰的OC课程 一共25节课 ...

  5. LeetCode668马在棋盘上的概率

    已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c)  ...

  6. 来自知乎的pthread_cond_wait为什么总是带着mutex

       来自https://www.zhihu.com/question/24116967?q=linux%20%E5%A4%9A%E7%BA%BF%E7%A8%8B%20%E8%99%9A%E5%81 ...

  7. hadoop配置文件: hdfs-site.xml, mapred-site.xml

    dfs.name.dir Determines where on the local filesystem the DFS name node should store the name table( ...

  8. MFC录制音频和播放音频

    一.录制音频 在windows中提供了相应的API函数(waveIn这个族的函数)实现录音功能:在使用这些函数时,一定要引入相应的头文件 #include <windows.h> #inc ...

  9. 团队Alpha版本冲刺(一)

    目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:丹丹 组员7:家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示组内 ...

  10. POJ 3481 Double Queue(Treap模板题)

    Double Queue Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15786   Accepted: 6998 Des ...