Matrix and Determinant

Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn

Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case of a 2 × 2 matrix the determinant may be defined as:

Similarly, for a 3 × 3 matrix A, its determinant is:

See more information about determinant here.

Rank of Matrix

The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).

A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).

The reduce step can be found in this article.

Eigenvalues and Eigenvectors

For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying

are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.

How to Calculate

The eigenvalues of C are then the solutions of

|(C − λIM)| = 0,

where |S| denotes the determinant of a square matrix S.

For each value of  λ, we can calculate the corresponding eigenvector x through solving the following equation:

This article gives a specific example of the calculating process.

Matrix Decompositions

Matrix diagonalization theorem

Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order

If the eigenvalues are distinct, then this decomposition is unique.

Symmetric diagonalization theorem

Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition

S = QΛQT

where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.

Further, all entries of Q are real and we have Q−1 = QT.

Singular value decompositions

Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form

where

1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.

2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.

3. 

The values σi are referred to as the singular values of C.

Here is the illustration of the singular-value decomposition.

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章

  1. Linear Algebra From Data

    Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...

  2. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  3. 奇异值分解(We Recommend a Singular Value Decomposition)

    奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...

  4. We Recommend a Singular Value Decomposition

    We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...

  5. 【转】奇异值分解(We Recommend a Singular Value Decomposition)

    文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...

  6. [转]奇异值分解(We Recommend a Singular Value Decomposition)

    原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...

  7. [转载]We Recommend a Singular Value Decomposition

    原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...

  8. Python Linear algebra

    Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...

  9. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

随机推荐

  1. HDU 6228 tree 简单思维树dp

    一.前言 前两天沈阳重现,经过队友提点,得到3题的成绩,但是看到这题下意识觉得题目错了,最后发现实际上是题目读错了....GG 感觉自己前所未有的愚蠢了....不过题目读对了也是一道思维题,但是很好理 ...

  2. 【Keepalived+MySQL】MySQL双主互备+高可用

    一.基本信息说明 [DB1] IP: 192.168.102.144 hostname: LVS-Real1 [DB2] IP: 192.168.102.145 hostname: LVS-Real2 ...

  3. Appium Windows服务端GUI详解

    Appium Windows服务端GUI各项的解释,从官方扒过来的,界面图标和最新版本有点不太一样,其他还是比较简单易懂的 原文https://github.com/appium/appium-dot ...

  4. macOS Sierra 触控板无法三指拖移窗口、三指选中文字的解决方法

    问题:升级macOS Sierra新系统后,发现触摸板无法进行三指拖移窗口.三指选定文字的操作.在“系统偏好设置”——“触控板”内无法进行设置. 解决:“系统偏好设置”——“辅助功能”——“鼠标与触控 ...

  5. 误删除pycharm项目中的文件,如何恢复?

    如果写代码的时候,不小心删除来某个文件夹或者文件,而且删除后回收站也找不到, 可以使用如下方法恢复: 选择 Local History -> Show History : 选中需要reset到的 ...

  6. Ognl对象图导航语言 源码

    // -------------------------------------------------------------------------- // Copyright (c) 1998- ...

  7. AlloyClip的简单使用

    <!DOCTYPE HTML> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 【bzoj1222】[HNOI2001]产品加工 背包dp

    题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时由两台机器共同进行加工 ...

  9. 蔬菜(vegetable)

    蔬菜(vegetable) 题目描述 题目背景:您使用脚本刷出了上题游戏 998244353 关的最高分 (最优解),心满意足的准备点继续学习,忽然一条弹窗弹了出来:你想明白活着的意义吗?你想真正的. ...

  10. Codeforces Round #362 (Div. 2) B 模拟

    B. Barnicle time limit per test 1 second memory limit per test 256 megabytes input standard input ou ...