[Math Review] Linear Algebra for Singular Value Decomposition (SVD)
Matrix and Determinant
Let C be an M × N matrix with real-valued entries, i.e. C={cij}mxn
Determinant is a value that can be computed from the elements of a square matrix. The determinant of a matrix A is denoted det(A), det A, or |A|.
In the case of a 2 × 2 matrix the determinant may be defined as:
Similarly, for a 3 × 3 matrix A, its determinant is:
See more information about determinant here.
Rank of Matrix
The Rank of a matrix is the number of linearly independent rows (or columns) in it, so rank(C)≤min(m,n).
A common approach to finding the rank of a matrix is to reduce it to a simpler form, generally row echelon form, by elementary row operations. The rank equals to the number of non-zero rows of the final matrix (in row echelon form).
The reduce step can be found in this article.
Eigenvalues and Eigenvectors
For a square M × M matrix C and a vector x that is not all zeros, the values of λ satisfying

are called the eigenvalues of C . The N-vector ⃗x satisfying the equation above for an eigenvalue λ is the corresponding right eigenvector.
How to Calculate
The eigenvalues of C are then the solutions of
|(C − λIM)| = 0,
where |S| denotes the determinant of a square matrix S.
For each value of λ, we can calculate the corresponding eigenvector x through solving the following equation:

This article gives a specific example of the calculating process.
Matrix Decompositions
Matrix diagonalization theorem
Let S be a square real-valued M × M matrix with M linearly independent eigenvectors. Then there exists an eigen decomposition

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose diagonal entries are the eigenvalues of S in decreasing order

If the eigenvalues are distinct, then this decomposition is unique.
Symmetric diagonalization theorem
Let S be a square, symmetric real-valued M × M matrix with M linearly independent eigenvectors. Then there exists a symmetric diagonal decomposition
S = QΛQT
where the columns of Q are the orthogonal and normalized (unit length, real) eigenvectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.
Further, all entries of Q are real and we have Q−1 = QT.
Singular value decompositions
Let r be the rank of the M × N matrix C. Then, there is a singular- value decomposition (SVD for short) of C of the form

where
1. U is the M × M matrix whose columns are the orthogonal eigenvectors of CCT.
2. V is the N × N matrix whose columns are the orthogonal eigenvectors of CTC.
3. 
The values σi are referred to as the singular values of C.
Here is the illustration of the singular-value decomposition.

[Math Review] Linear Algebra for Singular Value Decomposition (SVD)的更多相关文章
- Linear Algebra From Data
Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 奇异值分解(We Recommend a Singular Value Decomposition)
奇异值分解(We Recommend a Singular Value Decomposition) 原文作者:David Austin原文链接: http://www.ams.org/samplin ...
- We Recommend a Singular Value Decomposition
We Recommend a Singular Value Decomposition Introduction The topic of this article, the singular val ...
- 【转】奇异值分解(We Recommend a Singular Value Decomposition)
文章转自:奇异值分解(We Recommend a Singular Value Decomposition) 文章写的浅显易懂,很有意思.但是没找到转载方式,所以复制了过来.一个是备忘,一个是分享给 ...
- [转]奇异值分解(We Recommend a Singular Value Decomposition)
原文作者:David Austin原文链接: http://www.ams.org/samplings/feature-column/fcarc-svd译者:richardsun(孙振龙) 在这篇文章 ...
- [转载]We Recommend a Singular Value Decomposition
原文:http://www.ams.org/samplings/feature-column/fcarc-svd Introduction The topic of this article, the ...
- Python Linear algebra
Linear algebra 1.模块文档 NAME numpy.linalg DESCRIPTION Core Linear Algebra Tools ---------------------- ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
随机推荐
- [BZOJ3312][USACO]不找零(状压DP)
Description 约翰带着 N 头奶牛在超市买东西,现在他们正在排队付钱,排在第 i 个位置的奶牛需要支付 Ci元.今天说好所有东西都是约翰请客的,但直到付账的时候,约翰才意识到自己没带钱,身上 ...
- 【Todo】 cygwin下emacs中M-x shell 中出现乱码
- ZeroClipboard_copy
//<script src="js/ZeroClipboard.js" type="text/javascript"></script> ...
- 转投emacs
(global-set-key [f9] 'compile-file) (global-set-key [f10] 'gud-gdb) (global-set-key (kbd "C-z&q ...
- Python框架之Django学习笔记(七)
标签 eif/else {% if %} 标签检查(evaluate)一个变量,如果这个变量为真(即,变量存在,非空,不是布尔值假),系统会显示在 {% if %} 和 {% endif %} 之间的 ...
- STL 里面的几个容器简叙
出处:http://blog.csdn.net/niushuai666/article/details/6654951 list1.list的成员函数push_back()把一个对象放到一个list的 ...
- asp.net允许跨域访问
C# ASP.NET MVC 配置允许跨域访问 在web.config文件中的 system.webServer 节点下 增加如下配置 <httpProtocol> <customH ...
- order by 对null的处理
[Oracle 结论] order by colum asc 时,null默认被放在最后order by colum desc 时,null默认被放在最前nulls first 时,强制null放在最 ...
- codechef May Challenge 2016 FORESTGA: Forest Gathering 二分
Description All submissions for this problem are available. Read problems statements in Mandarin Chi ...
- [暑假集训--数论]poj2115 C Looooops
A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...