货车运输

题目描述

A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

输入文件名为 truck.in。

输入文件第一行有两个用一个空格隔开的整数 n,m,表示 A 国有 n 座城市和 m 条道

路。 接下来 m 行每行 3 个整数 x、 y、 z,每两个整数之间用一个空格隔开,表示从 x 号城市到 y 号城市有一条限重为 z 的道路。注意: x 不等于 y,两座城市之间可能有多条道路 。

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意: x 不等于 y 。

输出格式:

输出文件名为 truck.out。

输出共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货

车不能到达目的地,输出-1。

输入输出样例

输入样例#1:

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3
输出样例#1:

3
-1
3

说明

对于 30%的数据,0 < n < 1,000,0 < m < 10,000,0 < q< 1,000;

对于 60%的数据,0 < n < 1,000,0 < m < 50,000,0 < q< 1,000;

对于 100%的数据,0 < n < 10,000,0 < m < 50,000,0 < q< 30,000,0 ≤ z ≤ 100,000。

题解:

求最大生成树,然后在最大生成树上跑LCA。

因为是最大生成树,所以这样得到的路径最小值必定是题目所要求的答案。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int n,m,l,ans[],lim;
int father[];
struct node{int from,to,dis;}map[];
int find(int x){if(father[x]==x)return x;else return father[x]=find(father[x]);}
bool cmp(const node a,const node b){return a.dis>b.dis;}
struct question{int s,t,id;}que[];
int head[],size=;
struct Node{int next,to,dis;}edge[];
void putin(int from,int to,int dis){size++;edge[size].dis=dis;edge[size].to=to;edge[size].next=head[from];head[from]=size;}
int fa[][],mmin[][],vis[],dep[];
void dfs(int r,int depth)
{
vis[r]=;
dep[r]=depth;
for(int i=head[r];i!=-;i=edge[i].next)
{
int y=edge[i].to;
if(!vis[y])
{
fa[y][]=r;
mmin[y][]=edge[i].dis;
dfs(y,depth+);
}
}
}
void RMQ()
{
for(int i=;i<=lim;i++)
for(int j=;j<=n;j++)
{
fa[j][i]=fa[fa[j][i-]][i-];
mmin[j][i]=min(mmin[j][i-],mmin[fa[j][i-]][i-]);
}
}
int LCA(int x,int y)
{
int i,j,ans=;
if(dep[x]<dep[y])swap(x,y);
for(i=lim;i>=;i--)
if(dep[x]-(<<i)>=dep[y])
{
ans=min(ans,mmin[x][i]);
x=fa[x][i];
}
if(x!=y)
{
for(i=lim;i>=;i--)
{
if(fa[x][i]!=fa[y][i])
{
ans=min(ans,min(mmin[x][i],mmin[y][i]));
x=fa[x][i];
y=fa[y][i];
}
}
ans=min(ans,min(mmin[x][],mmin[y][]));
x=fa[x][];
y=fa[y][];
}
return ans;
}
int main()
{
int i,j;
memset(head,-,sizeof(head));
memset(ans,-,sizeof(ans));
memset(mmin,/,sizeof(mmin));
scanf("%d%d",&n,&m);lim=log2(n);
for(i=; i<=n; i++)father[i]=i;
for(i=; i<=m; i++)scanf("%d%d%d",&map[i].from,&map[i].to,&map[i].dis);
sort(map+,map+m+,cmp);
for(i=; i<=m; i++)
{
int p=find(map[i].from),q=find(map[i].to);
if(p!=q)
{
father[p]=q;
putin(p,q,map[i].dis);
putin(q,p,map[i].dis);
}
}
scanf("%d",&l);
for(i=;i<=n;i++)if(father[i]==i)dfs(i,);
RMQ();
for(i=; i<=l; i++)
{
int from,to;
scanf("%d%d",&from,&to);
if(find(from)==find(to))printf("%d\n",LCA(from,to));
else printf("-1\n");
}
return ;
}

[luogu 1967]货车运输的更多相关文章

  1. kruskal - 倍增 - 并查集 - Luogu 1967 货车运输

    P1967 货车运输 题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过 ...

  2. luogu 1967 货车运输(最大生成树+LCA)

    题意:给出一颗n个点的图,q个询问,每次询问u到v的路径中最小的边最大是多少. 图的最大生成树有一个性质,对于该图的任意两个点,在树中他们之间路径的最小边最大. 由于这个图不一定联通,于是我们对它的联 ...

  3. Luogu P1967 货车运输(Kruskal重构树)

    P1967 货车运输 题面 题目描述 \(A\) 国有 \(n\) 座城市,编号从 \(1\) 到 \(n\) ,城市之间有 \(m\) 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 \ ...

  4. 洛谷1967货车运输 即 NOIP2013 DAY1 T3

    题目描述 A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多 ...

  5. LUOGU P1967 货车运输(最大生成树+树剖+线段树)

    传送门 解题思路 货车所走的路径一定是最大生成树上的路径,所以先跑一个最大生成树,之后就是求一条路径上的最小值,用树剖+线段树,注意图可能不连通.将边权下放到点权上,但x,y路径上的lca的答案不能算 ...

  6. Luogu P1967 货车运输

    qwq 这题是知道了正解做法才写的.. 求每两点间最小权值最大的路径,本来我以为要每个点都跑一遍dij(?),后来意识到生成树好像是用来找这个的( ´▽`) 然后我问dtxdalao对不对,他说“我记 ...

  7. Luogu P1967 货车运输 倍增+最大生成树

    看见某大佬在做,决定补一发题解$qwq$ 首先跑出最大生成树(注意有可能不连通),然后我们要求的就是树上两点间路径上的最小边权. 我们用倍增的思路跑出来$w[u][j]$,表示$u$与的它$2^j$的 ...

  8. [Luogu 1967] NOIP2013 货车运输

    [Luogu 1967] NOIP2013 货车运输 一年多前令我十分头大的老题终于可以随手切掉了- 然而我这码风又变毒瘤了,我也很绝望. 看着一年前不带类不加空格不空行的清纯码风啊,时光也好像回去了 ...

  9. NOIP 2013 货车运输【Kruskal + 树链剖分 + 线段树 】【倍增】

    NOIP 2013 货车运输[树链剖分] 树链剖分 题目描述 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在 ...

随机推荐

  1. HihoCoder1651 : 小球染色([Offer收割]编程练习赛38)(DP的优化)

    描述 小Ho面前有N个小球排成了一排.每个小球可以被染成M种颜色之一. 为了增强视觉效果,小Ho希望不存在连续K个或者K个以上的小球颜色一样. 你能帮小Ho计算出一共有多少种不同的染色方法么? 例如N ...

  2. BZOJ1067&P2471 [SCOI2007]降雨量[线段树裸题+细节注意]

    dlntqlwsl 很裸的一道线段树题,被硬生生刷成了紫题..可能因为细节问题吧,我也栽了一次WA50分.不过这个隐藏条件真的对本菜鸡来说不易发现啊. 未知的年份连续的就看成一个就好了,把年份都离散化 ...

  3. 【Lintcode】069.Binary Tree Level Order Traversal

    题目: Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to ri ...

  4. 闪回之 Flashback Query (dml表、过程、函数、包等)、Flashback version Query

    Flashback Query 背景:Flashback 是 ORACLE 自 9i 就开始提供的一项特性,在 9i 中利用oracle 查询多版本一致的特点,实现从回滚段中读取表一定时间内操作过的数 ...

  5. Happy Great BG-卡精度

    Happy Great BG Time Limit: 2000ms Case Time Limit: 2000ms Memory Limit: 65536KB   64-bit integer IO ...

  6. MySQL安装过程中对The error code is 2203的解决方案

    MySQL安装过程中对The error code is 2203的解决方案 1.问题描述 Windows系统安装MySQL遇到The error code is 2203.,具体描述如下 The i ...

  7. KCF+Opencv3.0+Cmake+Win10 测试

    配置 需要的文件下载 安装CMake,安装opencv3.0.0 在KCFcpp-master 目录下新建一个文件夹,命名为build 打开CMake-GUI配置如下: 点击Configure,编译器 ...

  8. java web路径分析

    绝对路径:以/开头的路径就叫做绝对路径,绝对路径在相对于的路径上直接拼接得到最终的路径 相对路径:不以/开头的路径就叫做相对路径,相对路径基于当前所在的路径计算的到最终的路径 硬盘路径:以盘符开头的路 ...

  9. Docker入门(二):安装/卸载

    这个<Docker入门系列>文档,是根据Docker官网(https://docs.docker.com)的帮助文档大致翻译而成.主要是作为个人学习记录.有错误的地方,Robin欢迎大家指 ...

  10. Oracle&nbsp;11g&nbsp;R2安装手册(…

    1.Oracle 11g R2安装手册(图文教程)For Windows 1.下载Oracle 11g R2 for Windows版本,下载地址如下官方网站:http://download.orac ...