一、构建测试数据

create or replace function test_volatile(id integer)
returns bigint
volatile
language sql
as
$$ select count(*) from t1 $$ ;
/ create or replace function test_stable(id integer)
returns bigint
stable
language sql
as
$$ select count(*) from t1 $$ ;
/ create or replace function test_immutable(id integer)
returns bigint
immutable
language sql
as
$$ select count(*) from t1 $$ ;
/ insert into test select 1 from generate_series(1,1000);

二、没有索引情况下执行性能

这里的索引是指 test(id) 索引,显然,因为 id 值都是相同的,这里的索引实际意义不大。

test=# explain analyze select count(*) from test where id=test_volatile(1);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------
Aggregate (cost=270.00..270.01 rows=1 width=8) (actual time=16154.566..16154.566 rows=1 loops=1)
-> Seq Scan on test (cost=0.00..267.50 rows=1000 width=0) (actual time=16154.564..16154.564 rows=0 loops=1)
Filter: (id = test_volatile(1))
Rows Removed by Filter: 1000
Planning Time: 0.165 ms
Execution Time: 16154.585 ms
(6 rows) Time: 16155.404 ms (00:16.155)
test=#
test=# explain analyze select count(*) from test where id=test_stable(1);
QUERY PLAN
--------------------------------------------------------------------------------------------------------------
Aggregate (cost=267.50..267.51 rows=1 width=8) (actual time=16401.441..16401.441 rows=1 loops=1)
-> Seq Scan on test (cost=0.00..267.50 rows=1 width=0) (actual time=16401.439..16401.439 rows=0 loops=1)
Filter: (id = test_stable(1))
Rows Removed by Filter: 1000
Planning Time: 28.010 ms
Execution Time: 16401.473 ms
(6 rows) Time: 16430.319 ms (00:16.430) test=# explain analyze select count(*) from test where id=test_immutable(1);
QUERY PLAN
-----------------------------------------------------------------------------------------------------
Aggregate (cost=17.50..17.51 rows=1 width=8) (actual time=0.065..0.065 rows=1 loops=1)
-> Seq Scan on test (cost=0.00..17.50 rows=1 width=0) (actual time=0.064..0.064 rows=0 loops=1)
Filter: (id = '100000'::bigint)
Rows Removed by Filter: 1000
Planning Time: 44.469 ms
Execution Time: 0.083 ms
(6 rows) Time: 45.197 ms

  

三、创建索引情况下的执行性能

create index idx_test_id on test(id);

test=# explain analyze select count(*) from test where id=test_volatile(1);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------
Aggregate (cost=270.00..270.01 rows=1 width=8) (actual time=16497.225..16497.226 rows=1 loops=1)
-> Seq Scan on test (cost=0.00..267.50 rows=1000 width=0) (actual time=16497.223..16497.223 rows=0 loops=1)
Filter: (id = test_volatile(1))
Rows Removed by Filter: 1000
Planning Time: 0.438 ms
Execution Time: 16497.258 ms
(6 rows) Time: 16498.229 ms (00:16.498)
test=# explain analyze select count(*) from test where id=test_stable(1);
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=4.55..4.56 rows=1 width=8) (actual time=17.419..17.419 rows=1 loops=1)
-> Index Only Scan using idx_test_id on test (cost=0.53..4.54 rows=1 width=0) (actual time=17.417..17.417 rows=0 loops=1)
Index Cond: (id = test_stable(1))
Heap Fetches: 0
Planning Time: 16.875 ms
Execution Time: 17.511 ms
(6 rows) Time: 34.742 ms
test=# explain analyze select count(*) from test where id=test_immutable(1);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------
Aggregate (cost=4.30..4.31 rows=1 width=8) (actual time=0.011..0.011 rows=1 loops=1)
-> Index Only Scan using idx_test_id on test (cost=0.28..4.29 rows=1 width=0) (actual time=0.009..0.009 rows=0 loops=1)
Index Cond: (id = '100000'::bigint)
Heap Fetches: 0
Planning Time: 18.673 ms
Execution Time: 0.032 ms
(6 rows) Time: 19.042 ms

  

四、结论

1、对于 volatile 类型的函数,由于不同时刻函数结果可能不同,从安全角度需要逐行调用函数。

2、这里重点关注的 test_stable 函数:使用全表扫描,每行都要执行一次。使用索引,只需执行一次。

PostgreSQL 函数稳定性在索引与全表访问下的性能差异的更多相关文章

  1. mysql-update时where条件无索引锁全表

          1 5.3日数据处理需求 UPDATE md_meter set warranty_end_date = DATE_ADD(warranty_begin_date,INTERVAL 10 ...

  2. MYSQl 全表扫描以及查询性能

    MYSQl 全表扫描以及查询性能 -- 本文章仅用于学习,记录 一. Mysql在一些情况下全表检索比索引查询更快: 1.表格数据很少,使用全表检索会比使用索引检索更快.一般当表格总数据小于10行并且 ...

  3. sql语句优化:尽量使用索引避免全表扫描

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  4. Oracle 数据库禁止全表访问的时候direct path read /////

    一般在OLAP环境中,大表在进行全表扫描的时候一般会出现direct path read等待事件,如果在OLTP环境中,出现大量的direct path read直接路径读取,这样就有问题了.一般在O ...

  5. ABAP 内表访问表达式的性能

    内表访问表达式是ABAP 7.4中引入的重要特性,可以使语句变得更加简洁.美观.那么它的读写性能怎么样呢?我进行了一点点测试. 读取 测试代码,使用三种方式读取同一内表,分别是read table关键 ...

  6. postgresql函数:满足特定格式的表及指定日期前的删除

    -- 一.现有函数-- 1.现有函数调用select "ap"."delete_analysis_backup"('ap');-- 2.函数内容CREATE O ...

  7. MySQL 没有索引 锁全表

    <h3 class="title" style="box-sizing: inherit; margin: 8px 0px 15px; padding: 0px; ...

  8. SQL 数据优化索引建suo避免全表扫描

    首先什么是全表扫描和索引扫描?全表扫描所有数据过一遍才能显示数据结果,索引扫描就是索引,只需要扫描一部分数据就可以得到结果.如果数据没建立索引. 无索引的情况下搜索数据的速度和占用内存就会比用索引的检 ...

  9. 索引法则--LIKE以%开头会导致索引失效进而转向全表扫描(使用覆盖索引解决)

    Mysql 系列文章主页 =============== 1 准备数据 1.1 建表 DROP TABLE IF EXISTS staff; CREATE TABLE IF NOT EXISTS st ...

  10. MySQL 索引优化全攻略

    所谓索引就是为特定的mysql字段进行一些特定的算法排序,比如二叉树的算法和哈希算法,哈希算法是通过建立特征值,然后根据特征值来快速查找.而用的最多,并且是mysql默认的就是二叉树算法 BTREE, ...

随机推荐

  1. An Introduction to ANYDATA

    以下内容来自Oracle FAQ writen By Kevin,关于ANYDATA类型在项目中的应用. My newest project needed to create a record kee ...

  2. 【Android逆向】Frida 无脑暴力破解看雪test2.apk

    1. 安装apk到手机 adb install -t test2.apk apk下载位置: https://www.kanxue.com/work-task_read-800625.htm 2. 题目 ...

  3. 谈谈Tomcat占用cpu高的问题

    目录 问题现场 线程死锁 vs 线程死循环 排查Java进程导致CPU持续高的方法 Tomcat的CPU占用高的原因总结 问题现场 测试环境tomcat进程占用CPU一直持续99%,但是通过jstac ...

  4. React 受控和非受控组件

    无论你做什么,都要相信自己可以做到,因为你的潜力是无限的. 把父组件的状态变成属性传递给子组件,子组件接受这个属性,听命于父组件.这个子组件就是叫做受控组件.在受控与非受控组件有两种理解方案,第一:狭 ...

  5. webservice之jersey简单实用

    前言 项目中更需要使用到webservice,具体的是使用jersey.那么首先需要了解jersey和webservice的关系,捋顺webservice框架的各种实现,通过查阅相关博客,我个人总结w ...

  6. 【Azure 应用服务】App Servie网站报403 ModSecurity Action错误

    问题描述 App Service 部署应用程序,然后通过App Gateway(WAF) 提供公网访问,但是一直遇见403报错,刷新页面,回退,重新Web页面能缓解403问题. 问题分析 通过浏览器F ...

  7. Nebula Graph 源码解读系列 | Vol.06 MATCH 中变长 Pattern 的实现

    目录 问题分析 定长 Pattern 变长 Pattern 与变长 Pattern 的组合 执行计划 拓展一步 拓展多步 保存路径 变长拼接 总结 MATCH 作为 openCypher 语言的核心, ...

  8. (一)Git 学习之为什么要学习 Git

    一.版本控制 1.1 何为版本控制 版本控制(Revision control)是一种在开发的过程中用于管理我们对文件.目录或工程等内容的修改历史,方便查看更改历史记录.备份,以便恢复以前的版本的软件 ...

  9. 协议 UARST & 数据发送与接收

    STM32具有的协议 UASRT是通用异步/同步收发器,UART是通用异步收发器 串口空闲状态时高电平,开始传输数据时,第一个数据为固定的低电平: 数据:最后为高电平的停止位 奇偶校验:通过+1或者不 ...

  10. 摆脱鼠标操作 vscode-vim-use-readme.md

    vscode-vim 学习笔记 梳理下自己定义的快捷键 Normal模式返回 ESC capsLock 双击shift ctrl+[ jj ctrl+c (这个键比较特殊 用习惯y的话,考虑这个) 一 ...