Python数据分析易错知识点归纳(五):横向对比
五、横向对比
排序
# 列表
a.sort() # 修改原列表,返回值为None!!!!!这里很容易出错
sorted(a) # 生成新的列表
# 嵌套列表的排序(若是对字典排序,需先用list()转成列表形式)
li = [['A', 90], ['B', 20], ['C', 50]]
# 利用sorted()函数中的key属性重新建立排序规则
li = sorted(li, key=lambda x: x[1], reverse=True)
# numpy
#numpy.sort()函数返回输入数组的排序副本
#numpy.sort(a, axis, kind, order)
#axis: 沿着它排序数组的轴,如果没有数组会被展开,沿着最后的轴排序, axis=0 按列排序,axis=1 按行排序
#kind: 默认为'quicksort'(快速排序)
#order: 如果数组包含字段,则是要排序的字段
a = np.array([[3, 7], [9, 1]])
print('原数组:')
print(a)
print('调用sort() 函数:')
print(np.sort(a))
print('按列排序:')
print(np.sort(a, axis=0))
# 注意这两种排序结果的区别
print(sorted([[1,2,3],[0,1,1],[2,0,1]])) # 只看子列表中的第一个元素
'''
[[0, 1, 1], [1, 2, 3], [2, 0, 1]]
'''
print(np.sort([[1,2,3],[0,1,1],[2,0,1]])) # 默认axis=1
'''
[[1 2 3]
[0 1 1]
[0 1 2]]
'''
# Series
se.sort_values(ascending=False, inplace=True) #注意Series排序没有by参数
# dataframe
# 根据值排序
df.sort_values(by='A')
df.sort_values(by='A', ascending=False) # 逆序,默认升序
df.sort_values(by='A', inplace=True) # 改变原df
df.sort_values(by=['A', 'B'])
# 根据index排序
df.sort_index(ascending=False) # 用法与上面基本一致,只是没有by
逆序排序参数
列表:reverse=True
numpy、pandas: ascending=False
字典遍历和dataframe遍历的区别
# 字典遍历
for eachItem in dict1.items():
print(eachItem)
# Series遍历
for index, value in se.iteritems():
print(index) # 索引名
print(value) # 值
# dataframe遍历(分按行遍历和按列遍历)
# 按行遍历
for index, row in df.iterrows():
print(index) # 行名
print(row) # 每一行,为Series
# 按列遍历
for col_name,column in df.iteritems():
print(col_name) # 列名
print(column) # 每一列,为Series
列表和集合删除元素
| remove | pop | del | discard | |
|---|---|---|---|---|
| 列表 | 返回None;若不存在会报错 | 返回删除元素;参数默认为0,表示元素下标,超出会报错 | 例:del member[1] | 无 |
| 集合 | 同上 | 同上 | 无 | 返回None; 若不存在不会报错 |
不同的numpy生成方法形成的行列数量区别
np.ones np.eye np.zeros np.full
pandas删除行、列
df.drop
- 删除行
# 通过行名称删除:
df = df.drop(['1', '2']) # 不指定axis默认为0
df.drop(['1', '3'], inplace=True) # 注意若多行有相同行名,都删除
# 通过行号删除
df.drop(df.index[0], inplace=True) # 删除第1行
df.drop(df.index[0:3], inplace=True) # 删除前3行
df.drop(df.index[[0, 2]], inplace=True) # 删除第1第3行
# 通过过滤条件进行切片(实际应用时一般用)
chooses = df['B'].drop_duplicates().index
df.loc[chooses]
- 删除列
del df['A'] # 删除A列,会就地修改
df = df.drop(['B', 'C'], axis=1) # drop不会就地修改,创建副本返回
df.drop(['B', 'C'], axis=1, inplace=True) # inplace=True会就地修改
过滤空值
numpy 判断空值用np.isnan,其参数可以是数值或Numpy,也可以是DataFrame或Series
a = np.array([np.nan, 1, 2, np.nan, 3, 4, 5])
# ~取补运算符过滤NaN
print('非空过滤数组:')
print(a[~np.isnan(a)])
pandas 判断空值用isnull(),只能作用于DataFrame或Series
df = df[df['one'].isnull()]
df = df[df['one'].notnull()] df = df.dropna() # 删除全部是空值的行
df = df.dropna(subset=['one']) # 删除某一列是空值的行
pd开头的方法
- pd.DataFrame / pd.Series
- pd.set_option
- pd.read_csv / pd.read_excel
- pd.concat
- pd.merge
- pd.qcut
- pd.get_dummies
- pd.pivot_table
- pd.crosstab
prefix/suffixes
- prefix 在pd.get_dummies中使用
- suffixes 在pd.merge中使用
Python数据分析易错知识点归纳(五):横向对比的更多相关文章
- python函数-易错知识点
定义函数: def greet_users(names): #names是形参 """Print a simple greeting to each user in th ...
- JavaScript易错知识点整理
前言 本文是我学习JavaScript过程中收集与整理的一些易错知识点,将分别从变量作用域,类型比较,this指向,函数参数,闭包问题及对象拷贝与赋值这6个方面进行由浅入深的介绍和讲解,其中也涉及了一 ...
- JavaScript 易错知识点整理
本文是我学习JavaScript过程中收集与整理的一些易错知识点,将分别从变量作用域,类型比较,this指向,函数参数,闭包问题及对象拷贝与赋值这6个方面进行由浅入深的介绍和讲解,其中也涉及了一些ES ...
- JavaScript易错知识点整理[转]
前言 本文是我学习JavaScript过程中收集与整理的一些易错知识点,将分别从变量作用域,类型比较,this指向,函数参数,闭包问题及对象拷贝与赋值这6个方面进行由浅入深的介绍和讲解,其中也涉及了一 ...
- JS易错知识点
JAVASCRIPT易错知识点整理 前言 本文是学习JavaScript过程中收集与整理的一些易错知识点,将分别从变量作用域,类型比较,this指向,函数参数,闭包问题及对象拷贝与赋值这6个方面进行由 ...
- Java易错知识点(1) - 关于ArrayList移除元素后剩下的元素会立即重排
帮一个网友解答问题时,发现这样一个易错知识点,现总结如下: 1.易错点: ArrayList移除元素后,剩下的元素会立即重排,他的 size() 也会立即减小,在循环过程中容易出错.(拓展:延伸到所有 ...
- JavaScript易错知识点
JavaScript易错知识点整理1.变量作用域上方的函数作用域中声明并赋值了a,且在console之上,所以遵循就近原则输出a等于2. 上方的函数作用域中虽然声明并赋值了a,但位于console之下 ...
- Python入门---易错已错易混淆----知识点
1.not 1 or 0 and 1 or 3 and 4 or 5 and 6 or 7 and 8 and 9 结果会输出啥? 根据优先级:(not 1) or (0 and 1) or (3 a ...
- [置顶] 单片机C语言易错知识点经验笔记
今天写这一篇文章并不是因为已经想好了一篇文章才写下来,而是我要将这一篇文章作为一个长期的笔记来写,我会一直更新.在进行单片机开发时,经常都会出现一些很不起眼的问题,这些问题其实都是很基础的c语言知识点 ...
- Python的易错点
一.列表和元组的区别 列表是允许修改的,而元组是不能修改的,元组只能实现拼接,形成一个新的元组.两者可以实现相互转换,列表转换成元组使用truple函数,而元组转换成列表使用list函数. 二.Raw ...
随机推荐
- SQL server数据库拼接语句(STUFF)用法
我对SQLserver 中STUFF函数的理解是在sql server中将字符串中的第一个字符串某一部分字符替换成另外一部分,组成新的字符串数据. STUFF(character_expression ...
- Ffmpeg分布式视频转码问题总结
本文主要聊一聊云原生时代分布式转码系统实施过程中碰到的一些问题. 聊问题之前简单介绍一下我们的分布式转码方案. 云原生分布式转码 在计算资源招之即来的云计算时代,正在重构着软件架构的方方面面. 对软件 ...
- 教练!我不想遍历了!——用bool运算有效减少dataframe的时间复杂度
方法参考:python - 降低python for循环的时间复杂度 - 堆栈内存溢出 (stackoom.com) 朋友们,朋友们,事情是这样的. 这几天博主在处理数据的时候遇到了这样的标注数据: ...
- xcode历史版本下载
一.背景 较早之前做过一个项目,当时使用swift 3.x开发. 项目结束后就没再有新需求与更新. 但最近呢需要对项目的某些功能进行调整,项目又重新被拾了起来. 我们知道现在的swift 版本已经到了 ...
- wmi搜集一台计算机的硬件信息
作用: Python搜集一台计算机的硬件信息,借助模块:wmi,这个模块只支持window操作系统. 安装: pip install wmi 导入: import wmi 实例 c = wmi.WMI ...
- C# 实现 Linux 视频会议(源码,支持信创环境,银河麒麟,统信UOS)
信创是现阶段国家发展的重要战略之一,面对这一趋势,所有的软件应用只有支持信创国产化的基础软硬件设施,在未来才不会被淘汰.那么,如何可以使用C#来实现支持信创环境的视频会议系统吗?答案是肯定的. 本文讲 ...
- Vue2 去除定时器之常用三种方式及特殊方式
一般情况去除定时器的常用的三种方式方法:创建一下三种钩子函数,一般有其中一个就足以实现清除定时器的效果beforeDestroy(){ beforeDestroy(){ // 离开当前路由前的操作 c ...
- # 代码随想录算法训练营Day31 贪心算法| 1005.K次取反后最大化的数组和 134. 加油站 135. 分发糖果
代码随想录算法训练营 1005.K次取反后最大化的数组和 题目链接:1005.K次取反后最大化的数组和 给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 ...
- SCI 投稿中像素、DPI、图片分辨率的一些知识
最近在学习 Linux 命令行下的 ImageMagick 图像处理,对图像本身的一些概念有点懵,搜集整理了一点资料,仅供自己和大家学习与参考. SCI 期刊对分辨率大多都有一定的要求,例如一段来自 ...
- spring cloud gateway网关(一)之网关路由
1.gateway相关介绍 在微服务架构中,系统往往由多个微服务组成,而这些服务可能部署在不同机房.不同地区.不同域名下.这种情况下,客户端(例如浏览器.手机.软件工具等)想要直接请求这些服务,就需要 ...