齐次坐标知识点: \(\begin{bmatrix} x \\ y \\ z \\ 1 \\\end{bmatrix} \Rightarrow\begin{bmatrix} nx \\ ny \\ nz \\ n \\\end{bmatrix}\) 两个都表示同一个点

透视投影:先将远截面按一定规则缩放到跟近截面一样大,然后再正交投影

缩放规则:远截面缩放后\(z\)不变,缩放过后大小同近截面相同。

截取yz平面,\(ZNear = n,ZFar = f\) ,则任意一点经过缩放后: \(y^{’} = \frac{n}{z}y\) (相似三角形)

xz平面同理: \(x^{’} = \frac{n}{z}x\) ,即 \(\begin{bmatrix} x \\ y \\ z \\ 1 \\\end{bmatrix} \Rightarrow\begin{bmatrix} \frac{n}{z}x \\ \frac{n}{z}y \\ unknown \\ 1 \\\end{bmatrix}\Rightarrow\begin{bmatrix}nx \\ ny \\ unknown \\ z \\\end{bmatrix}\)

如此可以确定一部分矩阵参数:

\(M_{persp\rightarrow ortho} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ ... & ... & ... & ... \\ 0 & 0 & 1 & 0 \\\end{bmatrix}\)

对于近截面和远截面上的点,透视变换后z是不变的(缩放规则)

只看第三行的结果

\(\begin{bmatrix} A&B&C&D\\ \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \\\end{bmatrix} \Rightarrow z^2\)

显然 \(A = B = 0\) ,代入 \(Z = n ,Z = f\) 有

\(Cn+D = n^{2}\)

\(Cf+D = f^{2}\)

得到 \(C = n+f,D=-nf\)

最后求得

\(M_{persp\rightarrow ortho} = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \\\end{bmatrix}\)

课后问题:对于任意一个满足 \(n\leq z\leq f\) 的点,经过透视投影后, z 坐标相对于之前有什么变化

\(M_{persp\rightarrow ortho}\begin{bmatrix} x \\ y \\ z \\ 1 \\\end{bmatrix} \Rightarrow \begin{bmatrix} nx \\ ny \\ (n+f)z-nf \\ z\\\end{bmatrix}\Rightarrow \begin{bmatrix} \frac{n}{z}x \\ \frac{n}{z}y \\ \frac{(n+f)z-nf}{z} \\ 1\\\end{bmatrix}\)

比较 \(\frac{(n+f)z-nf}{z} - z\) 跟0的关系即可,不妨乘以一个 z 得到:

\(f(z) = -z^{2} + (n+f)z-nf = (z-n)(f-z)\)

又 \(n\leq z\leq f\) ,故 \(f(z) \geq 0\) ,即透视投影后, z 坐标相对于以前离相机更远了

对 \(f(z) = \frac{(n+f)z-nf}{z} - z\) ,对 \(z\) 求偏导

\(\begin{array}{l}
\frac{\partial f}{\partial z}=\frac{(n+f) z-(n+f) z+nf}{z^{2}}-1 \\
\frac{\partial f}{\partial z}=\frac{n f}{z^{2}}-1=\frac{nf-z^{2}}{z^{2}} \\
z^{2}=nf \quad z= \pm \sqrt{nf}
\end{array}\)

\(z\) 从 \(n\) 到 \(- \sqrt{nf}\) 单调递增之后单调递减

分数求导

\(\begin{array}{l}
g(x) \neq 0 , f(x) , g(x) \text { 均可导 } \\
{\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{[g(x)]^{2}}}
\end{array}\)

图形学、02 推导证明 | 任意一点经过透视投影后 z 坐标相对于之前有什么变化的更多相关文章

  1. 关于delphi点击webbrowser中任意一点的问题

    关于delphi点击webbrowser中任意一点的问题 有时候我们需要delphi载入webbrowser1打开网页的时候 需要点击某一个点的位置 可能是坐标 可能是按钮 可能是其他的控件应该如何来 ...

  2. echarts 点击方法总结,点任意一点获取点击数据,在多图联动中用生成标线举例

    关于点击(包括左击,双击,右击等)echarts图形任意一点,获取相关的图形数据,尤其是多图,我想部分人遇到这个问题一直很头大.下面我用举例说明,如何在多图联动基础上,我们点击点击任意一个图上任意一点 ...

  3. echarts 点击方法总结,点任意一点获取点击数据,举例说明:在多图联动中点击绘制标线

    关于点击(包括左击,双击,右击等)echarts图形任意一点,获取相关的图形数据,尤其是多图,我想部分人遇到这个问题一直很头大.下面我用举例说明,如何在多图联动基础上,我们点击任意一个图上任意一点,在 ...

  4. Bellman_Ford算法(求一个点到任意一点的最短距离)

    单源最短路问题是固定一个起点,求它到任意一点最短路的问题. 记从起点出发到顶点 i 的最短距离为d[i],则有以下等式成立 d[i]=min{d[j]+(从j到 i 的边的权值) 看代码 #inclu ...

  5. 求树上任意一点所能到达的最远距离 - 树上dp

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  6. 新手讲树:证明任意二叉树度为零的节点n0,永远比度为2的节点n2多1个

    证明:   设度为1的节点个数为n1,因为二叉树的所有节点的度都小于等于2, 所以n=n0+n1+n2; 又因为二叉树中,除了根节点所有的节点都有一个进入节点的分支,假设B为所有的分支,那么n=B+1 ...

  7. xdoj-1319 求树上任意一点的最大距离----利用树的直径

    1 #include <bits/stdc++.h> using namespace std; ; vector < vector <int> > g(N); in ...

  8. Dijkstra算法(求一点到任意一点的最短距离)

    思路:先找出最短的一个点,也就是起点,从起点出发,找最短的边,同时标记起点为true(代表已经访问过),访问过的点就不用再访问了,依次下去,保证每一次找到的边都是最短的边 到最后没有边可以更新了就代表 ...

  9. python根据圆的参数方程求圆上任意一点的坐标

    from math import cos, sin,pi x0,y0=0,0 r=4.0 angle=-25 x1 = x0 + r * cos(angle * pi / 180) y1 = y0 + ...

  10. VC、OpenGL、ArcGIS Engine开发的二维三维结合的GIS系统

    一.前言 众所周知,二维GIS技术发展了近四十年,伴随着计算机软硬件以及关系型数据库的飞速发展,二维GIS技术已日臻完善.在对地理信息的分析功能上有着无可比拟的优势.一些宏观的地理信息,一维的地理信息 ...

随机推荐

  1. 每日一题 力扣 1377 https://leetcode.cn/problems/frog-position-after-t-seconds/

    力扣 1377 https://leetcode.cn/problems/frog-position-after-t-seconds/ 这道题目用dp去做,构建邻接矩阵,做的时候需要注意题目条件,如果 ...

  2. Java protected 关键字详解

    很多介绍Java语言的书籍(包括<Java编程思想>)都对protected介绍的比较的简单,基本都是一句话,就是: 被 protected 修饰的成员对于本包和其子类可见.这种说法有点太 ...

  3. 盘古大模型加持,华为云开天aPaaS加速使能千行百业应用创新

    摘要:开天aPaaS,让优秀快速复制,支撑开发者及伙伴上好云.用好云. 本文分享自华为云社区<盘古大模型加持,华为云开天aPaaS加速使能千行百业应用创新>,作者:开天aPaaS小助手. ...

  4. eclipse在主题商城下载安装黑色主题

    Eclipse配置黑色主题方法: 1. 借用国外一个Elipse主题网站分享的主题配置文件来配置一个黑色的主题. 主题网址 2. 在这个网站下载自己喜欢的主题,单击主题进入下载页面,建议大家选择EPF ...

  5. 《最新出炉》系列入门篇-Python+Playwright自动化测试-8-上下文(Context)

    1.简介 其实前边的文章中也提到过Context,只不过是 一笔带过,但是宏哥觉得在playwright中挺重要的,所以宏哥今天单独将其拎出来讲解和分享一下,希望对您有所帮助或者参考. 2.前言 Pl ...

  6. async/await初学者指南

    JavaScript中的async和await关键字提供了一种现代语法,帮助我们处理异步操作.在本教程中,我们将深入研究如何使用async/await来掌控JavaScript程序中的流程控制. 总览 ...

  7. Centos7下创建Oracle用户

    Centos7下创建Oracle用户 Oracle中,一个用户其实就类似于一个数据库,本次就来创建一个新用户 登录 将系统用户切换到oracle用户下 su - oracle -- 启动sqlplus ...

  8. Linux 问题:网络相关

    防火墙 同网段双网卡 双网关 看服务日志

  9. std::queue 中遇到释放内存错误的问题

    项目上有个需求要用到 std::queue 顺序处理消息事件 简单的示例如下: struct MyEvent { MyEvent() { event_ = CreateEvent(nullptr, 0 ...

  10. NOIP2022 题解

    终于有机会补NOIP的题了 T1 考虑枚举 C 与 F 的纵列 考虑预处理出每个点最左边和最下边可以延伸到哪 之后枚举列,然后对行做类似于扫描线的操作,统计有多少可行的 "第一横行" ...