ST表

在RMQ(区间最值)问题中,著名的ST算法就是倍增的产物。ST算法可以在 \(O(n \log n)\) 的时间复杂度能预处理后,以 \(O(1)\) 的复杂度在线回答区间 [l, r] 内的最值。

当然,ST表不支持动态修改,如果需要动态修改,线段树是一种良好的解决方案,是 \(O(n)\) 的预处理时间复杂度,但是查询需要 \(O(\log n)\) 的时间复杂度

那么ST表中倍增的思想是如何体现的呢?

一个序列的子区间明显有 \(n^2\) 个,根据倍增的思想,我们在这么多个子区间中选择一些长度为 \(2\) 的整数次幂的区间作为代表值。

设 \(st[i][j]\) 表示子区间 \([i, i+2^j)\) 里最大的数

也可以表示为 \([i, i + 2^j -1 ]\),无论如何,其中有 \(2^j\) 个元素

下文中的 \(a\) 表示原序列

递推边界明显是 \(st[i][0] = a[i]\)。

于是,根据成倍增长的长度,有了递推公式

\[st[i][j] = max(st[i][j-1],\;st[i+2^{j-1}][j-1])
\]

当询问任意区间 \([l, r]\) 的最值时,我们先计算出一个最大的 \(k\) 满足:\(2^k \le r - l + 1\),即需要不大于区间长度。那么,由于二进制划分我们可以知道,这个最大的 k 一定满足 \(2^{k+1}\ge r-l+1\),即我们只需要将两个长度为 \(2^k\) 的区间合并即可。

又根据 max(a, a) = a 可以知道,重复计算区间是没有任何问题的。

所以,在寻找最值的时候就有了以下公式:

\[max(a[l, r]) = max(st[l][k], st[r-2^k + 1][k])
\]

那么这里给出一种参考代码

// 啊,写这种预处理以2位底的对数的整数值的方式
// 我主要是为了将代码模块化,做到低耦合度
// 完全是可以分开来写的
class Log2Factory {
private:
int lg2[N];
public:
void init(int n) {
for (int i = 2; i <= n; ++i) lg2[i] = lg2[i >> 1] + 1;
} // 重载()运算符
int operator() (const int &i) {
return lg2[i];
}
}; template<typename T>
class STable {
private:
    typedef T(*OP_FUNC)(T, T);     Log2Factory Log2;
T f[N][17]; // maybe most of the times k=17 is ok, make sure 2^k greater than N;
OP_FUNC op;
public:
void setOp(OP_FUNC fc) {
op = fc;
} void init(T *a, int n) {
for (int i = 1; i <= n; ++i)
f[i][0] = *(++a); int t = Log2(n);
// f[i][k] is the interval of [i, i + 2^k - 1]
// so f[i][k] can equal to the op sum of [i, i^k - 1]
// let r = i^k - 1
// => f[r - (1^k) + 1][k] can equal to the op sum of [i][k]
for (int k = 1; k <= t; ++k) {
for (int i = 1; i + (1<<k) - 1 <= n; ++i)
f[i][k] = op(f[i][k-1], f[i + (1<<(k-1))][k-1]);
}
} const T query(int l, int r) {
int k = Log2(r - l + 1);
return op(f[l][k], f[r - (1<<k) + 1][k]);
}
};

这……写法很神奇,注意修改!

扩展 - 运算

ST 算法不仅仅是可以求区间的最值的,只要是满足静态的,满足区间加法的问题大多数情况都可以通过 ST 表实现。

那么区间加法是什么意思呢?

定义我们需要对数列的筛选函数为 op ,则需要 op 满足以下性质

  • op(a, a) = a ,即重复参与运算不改变最终影响

  • op(a, b) = op(b, a) ,即满足交换律

  • op(a, op(b, c)) = op(op(a, b), c) ,即满足结合律

举个例子,如果我们求区间是否有负数,可以将 op 设为如下逻辑:

bool op(bool a, bool b) {
return a | b;
}

相应的,初始化的方式也需要更改

if (a[i] < 0) st[i][0] = true;
else st[i][0] = false;

再举一个例子,如果我们需要求区间是否全为偶数时,则初始化为

if (a[i] % 2 == 0) st[i][0] = true;
else st[i][0] = false;

操作 op 定义为

bool op(bool a, bool b) {
return a & b;
}

由此可见,其实ST算法可以做到的不仅仅是区间最值那么普通的东西啊。

但是,由于 加法 不满足性质一,所以,ST表通过这种方法并不能求得区间的所有满足某种性质的元素的个数。但是,通过另外一种 query 方式,我们可以做到这样。

扩展 - 区间

那么这个部分我们将讨论如何利用ST表做到上文例子中求区间偶数的个数。

同样,由于我们可以通过二进制划分,所以可以将某一个区间长度转化为多个长度为2的整数幂次方的子区间,并且可以保证这些区间不相互重叠。

所以我们可以利用这个处理 op(a, a) != a 的情况了。

其实这是借鉴了一点线段树的思路

还不如直接用线段树……

那么可以写出以下代码

int query(int l, int r) {
if (l == r) return st[l][0];
int k = log2(r - l + 1);
return op(st[l][k], query(l + (1<<k), r))
}

这样就满足了区间不重叠

或许会有一个问题,为什么初始化的时候不需要修改?

其实不难发现,初始化的合并是不会有重复贡献的情况的,即是每一次合并的区间是不会重叠的

算法学习笔记(3.1): ST算法的更多相关文章

  1. 算法学习笔记(3): 倍增与ST算法

    倍增 目录 倍增 查找 洛谷P2249 重点 变式练习 快速幂 ST表 扩展 - 运算 扩展 - 区间 变式答案 倍增,字面意思即"成倍增长" 他与二分十分类似,都是基于" ...

  2. 算法学习笔记(5): 最近公共祖先(LCA)

    最近公共祖先(LCA) 目录 最近公共祖先(LCA) 定义 求法 方法一:树上倍增 朴素算法 复杂度分析 方法二:dfs序与ST表 初始化与查询 复杂度分析 方法三:树链剖分 DFS序 性质 重链 重 ...

  3. C / C++算法学习笔记(8)-SHELL排序

    原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组 ...

  4. Manacher算法学习笔记 | LeetCode#5

    Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...

  5. 机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集

    机器学习实战(Machine Learning in Action)学习笔记————08.使用FPgrowth算法来高效发现频繁项集 关键字:FPgrowth.频繁项集.条件FP树.非监督学习作者:米 ...

  6. 机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析

    机器学习实战(Machine Learning in Action)学习笔记————07.使用Apriori算法进行关联分析 关键字:Apriori.关联规则挖掘.频繁项集作者:米仓山下时间:2018 ...

  7. 机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN)

    机器学习实战(Machine Learning in Action)学习笔记————02.k-邻近算法(KNN) 关键字:邻近算法(kNN: k Nearest Neighbors).python.源 ...

  8. [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian)

    [ML学习笔记] 朴素贝叶斯算法(Naive Bayesian) 贝叶斯公式 \[P(A\mid B) = \frac{P(B\mid A)P(A)}{P(B)}\] 我们把P(A)称为"先 ...

  9. Effective STL 学习笔记 31:排序算法

    Effective STL 学习笔记 31:排序算法 */--> div.org-src-container { font-size: 85%; font-family: monospace; ...

  10. Johnson算法学习笔记

    \(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快 ...

随机推荐

  1. Windows RPC应用详解

    1.介绍 RPC,全称"Remote Procedure Call",即远程过程调用,它并不是Windows独有的概念,RPC的第一个实现是在unix上:RPC在Windows上的 ...

  2. 完全兼容DynamoDB协议!GaussDB(for Cassandra)为NoSQL注入新活力

    摘要:DynamoDB是一款托管式的NoSQL数据库服务,支持多种数据模型,广泛应用于电商.社交媒体.游戏.IoT等场景. 本文分享自华为云社区<完全兼容DynamoDB协议!GaussDB(f ...

  3. Profinet转EtherNet/IP网关连接AB PLC的应用案例

    西门子S7-1500 PLC(profinet)与AB PLC以太网通讯(EtherNet/IP).本文主要介绍捷米特JM-EIP-PN的Profinet转EtherNet/IP网关,连接西门子S7- ...

  4. 聊一聊Java中的Steam流

    1 引言 在我们的日常编程任务中,对于集合的制造和处理是必不可少的.当我们需要对于集合进行分组或查找的操作时,需要用迭代器对于集合进行操作,而当我们需要处理的数据量很大的时候,为了提高性能,就需要使用 ...

  5. 【题解】ABC293E Sol

    题目大意 给定整数 \(A,X,M\),求 \(\sum\limits^{X-1}_{i=0} A^i\) 对 \(M\) 取模的值. 数据范围:\(1 \le A,M \le 10^9\),\(1 ...

  6. 活动回顾:Flutter实时音视频应用场景实践

    11月7日,即构和上海GDG技术社区联合举办了实时音视频技术云上技术分享专场,来自即构科技和Bilibili的资深技术专家进行了深度分享.大会吸引了500+开发人员交流.观看,并在活动过程中与分享嘉宾 ...

  7. Python数据分析易错知识点归纳(六):机器学习

    六.机器学习 分类和聚类的区别 分类是有监督学习,聚类是无监督学习 分类算法用于预测新样本,聚类用于理解已知数据 标准化/归一化 type_se_num = type_se[type_se!= 'ob ...

  8. nmcli 命令简单使用

    centos7/8 机器上默认有安装nmcli,可直接使用修改ip. nmcli c add type ethernet ifname eth0 # 会提示 'ethernet-eth0' 创建成功 ...

  9. ubuntu server安装图形化界面

    只需一个命令,然后重启即可: # apt-get install ubuntu-desktop # 查看下一次启动的设置 systemctl get-default # reboot

  10. 本地连接阿里云上的mysql centos

    首先写下原因: 未让3306端口通过防火墙 1.  检查端口是否被防火墙挡住 telnet ip地址 3306 在windows中打开telnet应用, 参考:https://www.cnblogs. ...