前言

简单介绍一下内存的优化。

正文

Redis所有的数据都在内存中,而内存又是非常宝贵的资源。如何优化内存的使用一直是Redis用户非常关注的问题。本节深入到Redis细节中,探索内存优化的技巧。

redisObject对象

Redis存储的所有值对象在内部定义为redisObject结构体,内部结构如图:

Redis存储的数据都使用redisObject来封装,包括string、hash、list、 set、zset在内的所有数据类型。理解redisObject对内存优化非常有帮助,下 面针对每个字段做详细说明:

·type字段:表示当前对象使用的数据类型,Redis主要支持5种数据类型:string、hash、list、set、zset。可以使用type{key}命令查看对象所属类 型,type命令返回的是值对象类型,键都是string类型。

encoding字段:表示Redis内部编码类型,encoding在Redis内部使用, 代表当前对象内部采用哪种数据结构实现。理解Redis内部编码方式对于优 化内存非常重要,同一个对象采用不同的编码实现内存占用存在明显差异。

lru字段:记录对象最后一次被访问的时间,当配置了maxmemory和 maxmemory-policy=volatile-lru或者allkeys-lru时,用于辅助LRU算法删除键数 据。可以使用object idletime{key}命令在不更新lru字段情况下查看当前键的 空闲时间。

开发提示:

可以使用scan+object idletime命令批量查询哪些键长时间未被访问,找 出长时间不访问的键进行清理,可降低内存占用。

refcount字段:记录当前对象被引用的次数,用于通过引用次数回收内 存,当refcount=0时,可以安全回收当前对象空间。使用object refcount{key} 获取当前对象引用。当对象为整数且范围在[0-9999]时,Redis可以使用共享 对象的方式来节省内存。

*ptr字段:与对象的数据内容相关,如果是整数,直接存储数据;否则 表示指向数据的指针。Redis在3.0之后对值对象是字符串且长度<=39字节的 数据,内部编码为embstr类型,字符串sds和redisObject一起分配,从而只要 一次内存操作即可。

高并发写入场景中,在条件允许的情况下,建议字符串长度控制在39字 节以内,减少创建redisObject内存分配次数,从而提高性能。

缩减键值对象

降低Redis内存使用最直接的方式就是缩减键(key)和值(value)的长 度。

·key长度:如在设计键时,在完整描述业务情况下,键值越短越好。如 user:{uid}:friends:notify:{fid}可以简化为u:{uid}:fs:nt:{fid}。

·value长度:值对象缩减比较复杂,常见需求是把业务对象序列化成二 进制数组放入Redis。

首先应该在业务上精简业务对象,去掉不必要的属性 避免存储无效数据。其次在序列化工具选择上,应该选择更高效的序列化工 具来降低字节数组大小。

以Java为例,内置的序列化方式无论从速度还是压 缩比都不尽如人意,这时可以选择更高效的序列化工具,如:protostuff、 kryo等,图8-7是Java常见序列化工具空间压缩对比。

值对象除了存储二进制数据之外,通常还会使用通用格式存储数据比 如:json、xml等作为字符串存储在Redis中。

这种方式优点是方便调试和跨语言,但是同样的数据相比字节数组所需的空间更大,在内存紧张的情况 下,可以使用通用压缩算法压缩json、xml后再存入Redis,从而降低内存占 用,例如使用GZIP压缩后的json可降低约60%的空间

开发提示:

当频繁压缩解压json等文本数据时,开发人员需要考虑压缩速度和计算 开销成本,这里推荐使用Google的Snappy压缩工具,在特定的压缩率情况下 效率远远高于GZIP等传统压缩工具,且支持所有主流语言环境

共享对象池

共享对象池是指Redis内部维护[0-9999]的整数对象池。

创建大量的整数 类型redisObject存在内存开销,每个redisObject内部结构至少占16字节,甚 至超过了整数自身空间消耗。

所以Redis内存维护一个[0-9999]的整数对象 池,用于节约内存。

除了整数值对象,其他类型如list、hash、set、zset内部 元素也可以使用整数对象池。因此开发中在满足需求的前提下,尽量使用整 数对象以节省内存。

整数对象池在Redis中通过变量REDIS_SHARED_INTEGERS定义,不能 通过配置修改。可以通过object refcount命令查看对象引用数验证是否启用整 数对象池技术,如下:

设置键foo等于100时,直接使用共享池内整数对象,因此引用数是2, 再设置键bar等于100时,引用数又变为3

使用共享对象池后,相同的数据内存使用降低30%以上。可见当数据大 量使用[0-9999]的整数时,共享对象池可以节约大量内存。

需要注意的是对 象池并不是只要存储[0-9999]的整数就可以工作。当设置maxmemory并启用 LRU相关淘汰策略如:volatile-lru,allkeys-lru时,Redis禁止使用共享对象 池,测试命令如下:

为什么开启maxmemory和LRU淘汰策略后对象池无效?

RU算法需要获取对象最后被访问时间,以便淘汰最长未访问数据,每 个对象最后访问时间存储在redisObject对象的lru字段。

对象共享意味着多个 引用共享同一个redisObject,这时lru字段也会被共享,导致无法获取每个对 象的最后访问时间。如果没有设置maxmemory,直到内存被用尽Redis也不 会触发内存回收,所以共享对象池可以正常工作。

综上所述,共享对象池与maxmemory+LRU策略冲突,使用时需要注 意。对于ziplist编码的值对象,即使内部数据为整数也无法使用共享对象池,因为ziplist使用压缩且内存连续的结构,对象共享判断成本过高,ziplist 编码细节后面内容详细说明。

为什么只有整数对象池?

首先整数对象池复用的几率最大,其次对象共享的一个关键操作就是判断相等性,Redis之所以只有整数对象池,是因为整数比较算法时间复杂度 为O(1),只保留一万个整数为了防止对象池浪费。

如果是字符串判断相 等性,时间复杂度变为O(n),特别是长字符串更消耗性能(浮点数在 Redis内部使用字符串存储)。

对于更复杂的数据结构如hash、list等,相等 性判断需要O(n2)。

对于单线程的Redis来说,这样的开销显然不合理,因 此Redis只保留整数共享对象池。

字符串优化

字符串对象是Redis内部最常用的数据类型。所有的键都是字符串类 型,值对象数据除了整数之外都使用字符串存储。比如执行命令:lpush cache:type"redis""memcache""tair""levelDB",Redis首先创建"cache:type"键 字符串,然后创建链表对象,链表对象内再包含四个字符串对象,排除 Redis内部用到的字符串对象之外至少创建5个字符串对象。可见字符串对象 在Redis内部使用非常广泛,因此深刻理解Redis字符串对于内存优化非常有帮助。

1.字符串结构

Redis没有采用原生C语言的字符串类型而是自己实现了字符串结构,内 部简单动态字符串(simple dynamic string,SDS)。

Redis自身实现的字符串结构有如下特点:

·O(1)时间复杂度获取:字符串长度、已用长度、未用长度。

·可用于保存字节数组,支持安全的二进制数据存储。

·内部实现空间预分配机制,降低内存再分配次数。

·惰性删除机制,字符串缩减后的空间不释放,作为预分配空间保留。

预分配机制:

因为字符串(SDS)存在预分配机制,日常开发中要小心预分配带来的内存浪费。

从测试数据可以看出,同样的数据追加后内存消耗非常严重,下面我们 结合图来分析这一现象。

尽量减少字符串频繁修改操作如append、setrange,改为直接使用set修 改字符串,降低预分配带来的内存浪费和内存碎片化。

字符串重构:指不一定把每份数据作为字符串整体存储,像json这样的 数据可以使用hash结构,使用二级结构存储也能帮我们节省内存。同时可以 使用hmget、hmset命令支持字段的部分读取修改,而不用每次整体存取。

根据测试结构,第一次默认配置下使用hash类型,内存消耗不但没有降 低反而比字符串存储多出2倍,而调整hash-max-ziplist-value=66之后内存降 低为535.60M。因为json的videoAlbumPic属性长度是65,而hash-max-ziplist- value默认值是64,Redis采用hashtable编码方式,反而消耗了大量内存。调 整配置后hash类型内部编码方式变为ziplist,相比字符串更省内存且支持属性的部分操作。下一节将具体介绍ziplist编码优化细节。

编码优化

Redis对外提供了string、list、hash、set、zet等类型,但是Redis内部针对 不同类型存在编码的概念,所谓编码就是具体使用哪种底层数据结构来实 现。编码不同将直接影响数据的内存占用和读写效率。使用object encoding{key}命令获取编码类型。

Redis针对每种数据类型(type)可以采用至少两种编码方式来实现。

了解编码和类型对应关系之后,我们不禁疑惑Redis为什么对一种数据 结构实现多种编码方式?

------------恢复内容结束------------

------------恢复内容开始------------

前言

简单介绍一下内存的优化。

正文

Redis所有的数据都在内存中,而内存又是非常宝贵的资源。如何优化内存的使用一直是Redis用户非常关注的问题。本节深入到Redis细节中,探索内存优化的技巧。

redisObject对象

Redis存储的所有值对象在内部定义为redisObject结构体,内部结构如图:

Redis存储的数据都使用redisObject来封装,包括string、hash、list、 set、zset在内的所有数据类型。理解redisObject对内存优化非常有帮助,下 面针对每个字段做详细说明:

·type字段:表示当前对象使用的数据类型,Redis主要支持5种数据类型:string、hash、list、set、zset。可以使用type{key}命令查看对象所属类 型,type命令返回的是值对象类型,键都是string类型。

encoding字段:表示Redis内部编码类型,encoding在Redis内部使用, 代表当前对象内部采用哪种数据结构实现。理解Redis内部编码方式对于优 化内存非常重要,同一个对象采用不同的编码实现内存占用存在明显差异。

lru字段:记录对象最后一次被访问的时间,当配置了maxmemory和 maxmemory-policy=volatile-lru或者allkeys-lru时,用于辅助LRU算法删除键数 据。可以使用object idletime{key}命令在不更新lru字段情况下查看当前键的 空闲时间。

开发提示:

可以使用scan+object idletime命令批量查询哪些键长时间未被访问,找 出长时间不访问的键进行清理,可降低内存占用。

refcount字段:记录当前对象被引用的次数,用于通过引用次数回收内 存,当refcount=0时,可以安全回收当前对象空间。使用object refcount{key} 获取当前对象引用。当对象为整数且范围在[0-9999]时,Redis可以使用共享 对象的方式来节省内存。

*ptr字段:与对象的数据内容相关,如果是整数,直接存储数据;否则 表示指向数据的指针。Redis在3.0之后对值对象是字符串且长度<=39字节的 数据,内部编码为embstr类型,字符串sds和redisObject一起分配,从而只要 一次内存操作即可。

高并发写入场景中,在条件允许的情况下,建议字符串长度控制在39字 节以内,减少创建redisObject内存分配次数,从而提高性能。

缩减键值对象

降低Redis内存使用最直接的方式就是缩减键(key)和值(value)的长 度。

·key长度:如在设计键时,在完整描述业务情况下,键值越短越好。如 user:{uid}:friends:notify:{fid}可以简化为u:{uid}:fs:nt:{fid}。

·value长度:值对象缩减比较复杂,常见需求是把业务对象序列化成二 进制数组放入Redis。

首先应该在业务上精简业务对象,去掉不必要的属性 避免存储无效数据。其次在序列化工具选择上,应该选择更高效的序列化工 具来降低字节数组大小。

以Java为例,内置的序列化方式无论从速度还是压 缩比都不尽如人意,这时可以选择更高效的序列化工具,如:protostuff、 kryo等,图8-7是Java常见序列化工具空间压缩对比。

值对象除了存储二进制数据之外,通常还会使用通用格式存储数据比 如:json、xml等作为字符串存储在Redis中。

这种方式优点是方便调试和跨语言,但是同样的数据相比字节数组所需的空间更大,在内存紧张的情况 下,可以使用通用压缩算法压缩json、xml后再存入Redis,从而降低内存占 用,例如使用GZIP压缩后的json可降低约60%的空间

开发提示:

当频繁压缩解压json等文本数据时,开发人员需要考虑压缩速度和计算 开销成本,这里推荐使用Google的Snappy压缩工具,在特定的压缩率情况下 效率远远高于GZIP等传统压缩工具,且支持所有主流语言环境

共享对象池

共享对象池是指Redis内部维护[0-9999]的整数对象池。

创建大量的整数 类型redisObject存在内存开销,每个redisObject内部结构至少占16字节,甚 至超过了整数自身空间消耗。

所以Redis内存维护一个[0-9999]的整数对象 池,用于节约内存。

除了整数值对象,其他类型如list、hash、set、zset内部 元素也可以使用整数对象池。因此开发中在满足需求的前提下,尽量使用整 数对象以节省内存。

整数对象池在Redis中通过变量REDIS_SHARED_INTEGERS定义,不能 通过配置修改。可以通过object refcount命令查看对象引用数验证是否启用整 数对象池技术,如下:

设置键foo等于100时,直接使用共享池内整数对象,因此引用数是2, 再设置键bar等于100时,引用数又变为3

使用共享对象池后,相同的数据内存使用降低30%以上。可见当数据大 量使用[0-9999]的整数时,共享对象池可以节约大量内存。

需要注意的是对 象池并不是只要存储[0-9999]的整数就可以工作。当设置maxmemory并启用 LRU相关淘汰策略如:volatile-lru,allkeys-lru时,Redis禁止使用共享对象 池,测试命令如下:

为什么开启maxmemory和LRU淘汰策略后对象池无效?

RU算法需要获取对象最后被访问时间,以便淘汰最长未访问数据,每 个对象最后访问时间存储在redisObject对象的lru字段。

对象共享意味着多个 引用共享同一个redisObject,这时lru字段也会被共享,导致无法获取每个对 象的最后访问时间。如果没有设置maxmemory,直到内存被用尽Redis也不 会触发内存回收,所以共享对象池可以正常工作。

综上所述,共享对象池与maxmemory+LRU策略冲突,使用时需要注 意。对于ziplist编码的值对象,即使内部数据为整数也无法使用共享对象池,因为ziplist使用压缩且内存连续的结构,对象共享判断成本过高,ziplist 编码细节后面内容详细说明。

为什么只有整数对象池?

首先整数对象池复用的几率最大,其次对象共享的一个关键操作就是判断相等性,Redis之所以只有整数对象池,是因为整数比较算法时间复杂度 为O(1),只保留一万个整数为了防止对象池浪费。

如果是字符串判断相 等性,时间复杂度变为O(n),特别是长字符串更消耗性能(浮点数在 Redis内部使用字符串存储)。

对于更复杂的数据结构如hash、list等,相等 性判断需要O(n2)。

对于单线程的Redis来说,这样的开销显然不合理,因 此Redis只保留整数共享对象池。

字符串优化

字符串对象是Redis内部最常用的数据类型。所有的键都是字符串类 型,值对象数据除了整数之外都使用字符串存储。比如执行命令:lpush cache:type"redis""memcache""tair""levelDB",Redis首先创建"cache:type"键 字符串,然后创建链表对象,链表对象内再包含四个字符串对象,排除 Redis内部用到的字符串对象之外至少创建5个字符串对象。可见字符串对象 在Redis内部使用非常广泛,因此深刻理解Redis字符串对于内存优化非常有帮助。

1.字符串结构

Redis没有采用原生C语言的字符串类型而是自己实现了字符串结构,内 部简单动态字符串(simple dynamic string,SDS)。

Redis自身实现的字符串结构有如下特点:

·O(1)时间复杂度获取:字符串长度、已用长度、未用长度。

·可用于保存字节数组,支持安全的二进制数据存储。

·内部实现空间预分配机制,降低内存再分配次数。

·惰性删除机制,字符串缩减后的空间不释放,作为预分配空间保留。

预分配机制:

因为字符串(SDS)存在预分配机制,日常开发中要小心预分配带来的内存浪费。

从测试数据可以看出,同样的数据追加后内存消耗非常严重,下面我们 结合图来分析这一现象。

尽量减少字符串频繁修改操作如append、setrange,改为直接使用set修 改字符串,降低预分配带来的内存浪费和内存碎片化。

字符串重构:指不一定把每份数据作为字符串整体存储,像json这样的 数据可以使用hash结构,使用二级结构存储也能帮我们节省内存。同时可以 使用hmget、hmset命令支持字段的部分读取修改,而不用每次整体存取。

根据测试结构,第一次默认配置下使用hash类型,内存消耗不但没有降 低反而比字符串存储多出2倍,而调整hash-max-ziplist-value=66之后内存降 低为535.60M。因为json的videoAlbumPic属性长度是65,而hash-max-ziplist- value默认值是64,Redis采用hashtable编码方式,反而消耗了大量内存。调 整配置后hash类型内部编码方式变为ziplist,相比字符串更省内存且支持属性的部分操作。下一节将具体介绍ziplist编码优化细节。

编码优化

Redis对外提供了string、list、hash、set、zet等类型,但是Redis内部针对 不同类型存在编码的概念,所谓编码就是具体使用哪种底层数据结构来实 现。编码不同将直接影响数据的内存占用和读写效率。使用object encoding{key}命令获取编码类型。

Redis针对每种数据类型(type)可以采用至少两种编码方式来实现。

了解编码和类型对应关系之后,我们不禁疑惑Redis为什么对一种数据 结构实现多种编码方式?

了解编码和类型对应关系之后,我们不禁疑惑Redis为什么对一种数据 结构实现多种编码方式? 主要原因是Redis作者想通过不同编码实现效率和空间的平衡。

比如当 我们的存储只有10个元素的列表,当使用双向链表数据结构时,必然需要维 护大量的内部字段如每个元素需要:前置指针,后置指针,数据指针等,造 成空间浪费,如果采用连续内存结构的压缩列表(ziplist),将会节省大量 内存,而由于数据长度较小,存取操作时间复杂度即使为O(n2)性能也可 满足需求。

编码类型转换在Redis写入数据时自动完成,这个转换过程是不可逆 的,转换规则只能从小内存编码向大内存编码转换。

以上命令体现了list类型编码的转换过程,其中Redis之所以不支持编码 回退,主要是数据增删频繁时,数据向压缩编码转换非常消耗CPU,得不偿 失。以上示例用到了list-max-ziplist-entries参数,这个参数用来决定列表长度 在多少范围内使用ziplist编码。

理解编码转换流程和相关配置之后,可以使用config set命令设置编码相 关参数来满足使用压缩编码的条件。对于已经采用非压缩编码类型的数据如 hashtable、linkedlist等,设置参数后即使数据满足压缩编码条件,Redis也不 会做转换,需要重启Redis重新加载数据才能完成转换。

ziplist编码主要目的是为了节约内存,因此所有数据都是采用线性连续 的内存结构。ziplist编码是应用范围最广的一种,可以分别作为hash、list、 zset类型的底层数据结构实现。首先从ziplist编码结构开始分析,它的内部结 构类似这样:<....> 。一个ziplist可以包含多个entry(元素),每个entry保存具体的数据 (整数或者字节数组)。

1)zlbytes:记录整个压缩列表所占字节长度,方便重新调整ziplist空 间。类型是int-32,长度为4字节。

2)zltail:记录距离尾节点的偏移量,方便尾节点弹出操作。类型是int- 32,长度为4字节。

3)zllen:记录压缩链表节点数量,当长度超过216-2时需要遍历整个列 表获取长度,一般很少见。类型是int-16,长度为2字节。

4)entry:记录具体的节点,长度根据实际存储的数据而定。

a)prev_entry_bytes_length:记录前一个节点所占空间,用于快速定位 上一个节点,可实现列表反向迭代。

b)encoding:标示当前节点编码和长度,前两位表示编码类型:字符 串/整数,其余位表示数据长度。

c)contents:保存节点的值,针对实际数据长度做内存占用优化。

5)zlend:记录列表结尾,占用一个字节。 根据以上对ziplist字段说明,可以分析出该数据结构特点如下: ·内部表现为数据紧凑排列的一块连续内存数组。 ·可以模拟双向链表结构,以O(1)时间复杂度入队和出队。

·新增删除操作涉及内存重新分配或释放,加大了操作的复杂性。

·读写操作涉及复杂的指针移动,最坏时间复杂度为O(n2)

·适合存储小对象和长度有限的数据。

测试数据采用100W个36字节数据,划分为1000个键,每个类型长度统 一为1000。从测试结果可以看出:

1)使用ziplist可以分别作为hash、list、zset数据类型实现。

2)使用ziplist编码类型可以大幅降低内存占用。

3)ziplist实现的数据类型相比原生结构,命令操作更加耗时,不同类型 耗时排序:list<hash<zset。

ziplist压缩编码的性能表现跟值长度和元素个数密切相关,正因为如此 Redis提供了{type}-max-ziplist-value和{type}-max-ziplist-entries相关参数来做 控制ziplist编码转换。

最后再次强调使用ziplist压缩编码的原则:追求空间和 时间的平衡。

开发技巧:

针对性能要求较高的场景使用ziplist,建议长度不要超过1000,每个元 素大小控制在512字节以内。 命令平均耗时使用info Commandstats命令获取,包含每个命令调用次 数、总耗时、平均耗时,单位为微秒

intset编码:

intset编码是集合(set)类型编码的一种,内部表现为存储有序、不重 复的整数集。当集合只包含整数且长度不超过set-max-intset-entries配置时被 启用。

以上命令可以看出intset对写入整数进行排序,通过O(log(n))时间 复杂度实现查找和去重操作.

intset的字段结构含义:

1)encoding:整数表示类型,根据集合内最长整数值确定类型,整数 类型划分为三种:int-16、int-32、int-64。

2)length:表示集合元素个数。

3)contents:整数数组,按从小到大顺序保存。

intset保存的整数类型根据长度划分,当保存的整数超出当前类型时, 将会触发自动升级操作且升级后不再做回退。升级操作将会导致重新申请内 存空间,把原有数据按转换类型后拷贝到新数组。

使用intset编码的集合时,尽量保持整数范围一致,如都在int-16范围 内。防止个别大整数触发集合升级操作,产生内存浪费。

下面通过测试查看ziplist编码的集合内存和速度表现:

根据以上测试结果发现intset表现非常好,同样的数据内存占用只有不 到hashtable编码的十分之一。

intset数据结构插入命令复杂度为O(n),查询 命令为O(log(n)),由于整数占用空间非常小,所以在集合长度可控的 基础上,写入命令执行速度也会非常快,因此当使用整数集合时尽量使用 intset编码。

第三行把ziplist-hash类型也放入其中,主要因为intset 编码必须存储整数,当集合内保存非整数数据时,无法使用intset实现内存 优化。这时可以使用ziplist-hash类型对象模拟集合类型,hash的field当作集 合中的元素,value设置为1字节占位符即可。使用ziplist编码的hash类型依然 比使用hashtable编码的集合节省大量内存。

控制键的数量

当使用Redis存储大量数据时,通常会存在大量键,过多的键同样会消 耗大量内存。

Redis本质是一个数据结构服务器,它为我们提供多种数据结 构,如hash、list、set、zset等。使用Redis时不要进入一个误区,大量使用 get/set这样的API,把Redis当成Memcached使用。

对于存储相同的数据内容 利用Redis的数据结构降低外层键的数量,也可以节省大量内存。

通过在客户端预估键规模,把大量键分组映射到多个hash结构中降低 键的数量.

hash结构降低键数量分析:

根据键规模在客户端通过分组映射到一组hash对象中,如存在100万个 键,可以映射到1000个hash中,每个hash保存1000个元素。

·hash的field可用于记录原始key字符串,方便哈希查找。

.hash的value保存原始值对象,确保不要超过hash-max-ziplist-value限制。

下面测试这种优化技巧的内存表现:

·同样的数据使用ziplist编码的hash类型存储比string类型节约内存。

·节省内存量随着value空间的减少越来越明显。

·hash-ziplist类型比string类型写入耗时,但随着value空间的减少,耗时 逐渐降低。

使用hash重构后节省内存量效果非常明显,特别对于存储小对象的场 景,内存只有不到原来的1/5。下面分析这种内存优化技巧的关键点:

1)hash类型节省内存的原理是使用ziplist编码,如果使用hashtable编码 方式反而会增加内存消耗。

2)ziplist长度需要控制在1000以内,否则由于存取操作时间复杂度在 O(n)到O(n2)之间,长列表会导致CPU消耗严重,得不偿失。

3)ziplist适合存储小对象,对于大对象不但内存优化效果不明显还会增 加命令操作耗时。

4)需要预估键的规模,从而确定每个hash结构需要存储的元素数量。

5)根据hash长度和元素大小,调整hash-max-ziplist-entries和hash-max- ziplist-value参数,确保hash类型使用ziplist编码。

关于hash键和field键的设计:

1)当键离散度较高时,可以按字符串位截取,把后三位作为哈希的 field,之前部分作为哈希的键。如:key=1948480哈希key=group:hash: 1948,哈希field=480

2)当键离散度较低时,可以使用哈希算法打散键,如:使用 crc32(key)&10000函数把所有的键映射到“0-9999”整数范围内,哈希field 存储键的原始值。

3)尽量减少hash键和field的长度,如使用部分键内容。

使用hash结构控制键的规模虽然可以大幅降低内存,但同样会带来问 题,需要提前做好规避处理。如下所示:

·客户端需要预估键的规模并设计hash分组规则,加重客户端开发成 本。

·hash重构后所有的键无法再使用超时(expire)和LRU淘汰机制自动删 除,需要手动维护删除。

·对于大对象,如1KB以上的对象,使用hash-ziplist结构控制键数量反而 得不偿失。

不过瑕不掩瑜,对于大量小对象的存储场景,非常适合使用ziplist编码 的hash类型控制键的规模来降低内存。

开发提示:

使用ziplist+hash优化keys后,如果想使用超时删除功能,开发人员可以 存储每个对象写入的时间,再通过定时任务使用hscan命令扫描数据,找出 hash内超时的数据项删除即可。

本节主要讲解Redis内存优化技巧,Redis的数据特性是“all in memory”, 优化内存将变得非常重要。

对于内存优化建议读者先要掌握Redis内存存储的特性比如字符串、压缩编码、整数集合等,再根据数据规模和所用命令需求去调整,从而达到空间和效率的最佳平衡。

建议使用Redis存储大量数据时,把内存优化环节加入到前期设计阶段,否则数据大幅增长后,开发人员需要面对重新优化内存所带来开发和数据迁移的双重成本。

当Redis内存不足时,首先考虑的问题不是加机器做水平扩展,应该先尝试做内存优化,当 遇到瓶颈时,再去考虑水平扩展。即使对于集群化方案,垂直层面优化也同 样重要,避免不必要的资源浪费和集群化后的管理成本。

总结

1)Redis实际内存消耗主要包括:键值对象、缓冲区内存、内存碎片。

2)通过调整maxmemory控制Redis最大可用内存。当内存使用超出时, 根据maxmemory-policy控制内存回收策略。

3)内存是相对宝贵的资源,通过合理的优化可以有效地降低内存的使 用量,内存优化的思路包括

·精简键值对大小,键值字面量精简,使用高效二进制序列化工具。

·使用对象共享池优化小整数对象。

·数据优先使用整数,比字符串类型更节省空间。

·优化字符串使用,避免预分配造成的内存浪费。

·使用ziplist压缩编码优化hash、list等结构,注重效率和空间的平衡。

·使用intset编码优化整数集合。

.使用ziplist编码的hash结构降低小对象链规模。

下一节哨兵模式。

redis 简单整理——内存的优化[二十七]的更多相关文章

  1. Redis内存使用优化与存储

    抄自http://www.infoq.com/cn/articles/tq-redis-memory-usage-optimization-storage 本文将对Redis的常见数据类型的使用场景以 ...

  2. Redis内存使用优化与存储(转)

    Redis常用数据类型 Redis最为常用的数据类型主要有以下五种: String Hash List Set Sorted set 在具体描述这几种数据类型之前,我们先通过一张图了解下Redis内部 ...

  3. Redis 内存使用优化与存储

    Redis 常用数据类型 Redis 最为常用的数据类型主要有以下五种: • String • Hash • List • Set • Sorted set 在具体描述这几种数据类型之前,我们先通过一 ...

  4. 面试简单整理之Redis

    179.redis 是什么?都有哪些使用场景? Redis是一个key-value存储系统. 缓存,消息队列,排行榜/计数器,分布式架构,做session共享 180.redis 有哪些功能? 181 ...

  5. NoSQL数据库:Redis内存使用优化与存储

    Redis常用数据类型 Redis最为常用的数据类型主要有以下五种: ●String ●Hash ●List ●Set ●Sorted set 在具体描述这几种数据类型之前,我们先通过一张图了解下Re ...

  6. [转帖]美团在Redis上踩过的一些坑-4.redis内存使用优化

    美团在Redis上踩过的一些坑-4.redis内存使用优化 博客分类: 运维 redis redisstringhash优化segment-hash  转载请注明出处哈:http://carlosfu ...

  7. 分布式缓存技术redis学习系列(二)——详细讲解redis数据结构(内存模型)以及常用命令

    Redis数据类型 与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多,常用的数据类型主要有五种:String.List.Hash.Set和Sor ...

  8. 分布式缓存技术redis学习(二)——详细讲解redis数据结构(内存模型)以及常用命令

    Redis数据类型 与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多,常用的数据类型主要有五种:String.List.Hash.Set和Sor ...

  9. 重新整理 .net core 实践篇—————仓储层的具体实现[二十七]

    前言 简单整理一下仓储层. 正文 在共享层的基础建设类库中: /// <summary> /// 泛型仓储接口 /// </summary> /// <typeparam ...

  10. Chrome V8系列--浅析Chrome V8引擎中的垃圾回收机制和内存泄露优化策略

    V8 实现了准确式 GC,GC 算法采用了分代式垃圾回收机制.因此,V8 将内存(堆)分为新生代和老生代两部分. 一.前言 V8的垃圾回收机制:JavaScript使用垃圾回收机制来自动管理内存.垃圾 ...

随机推荐

  1. SpringCloud Ribbon和Feign 的使用和源码分析

    1. Ribbon 介绍 Ribbon 是 Netflix 公司开源的一款 客户端 负载均衡软件,并被SpringCloud集成 作为SpringCloud 负载均衡的工具 服务端负载均衡 : 即在服 ...

  2. Toyota Programming Contest 2024#2(AtCoder Beginner Contest 341)D - Only one of two(数论、二分)

    目录 链接 题面 题意 题解 代码 总结 链接 D - Only one of two 题面 题意 求第\(k\)个只能被\(N\)或\(M\)整除的数 题解 \([1,x]\)中的能被\(n\)整除 ...

  3. MySQL基础篇快速记忆和查询

    查询 语法: SELECT 标识选择哪些列 FROM 标识从哪个表中选择 去重(Distinct) 在SELECT语句中使用关键字DISTINCT去除重复行 SELECT DISTINCT depar ...

  4. 基于RocketMQ实现分布式事务

    背景 在一个微服务架构的项目中,一个业务操作可能涉及到多个服务,这些服务往往是独立部署,构成一个个独立的系统.这种分布式的系统架构往往面临着分布式事务的问题.为了保证系统数据的一致性,我们需要确保这些 ...

  5. 什么是k8s中的sidecar模式

    在Kubernetes中,Sidecar模式是一种将辅助容器与主应用程序容器一起部署在同一个Pod中的设计模式.这种模式的目的是将辅助功能与主应用程序解耦,并提供独立发布.能力重用以及共享资源和网络的 ...

  6. Web Audio API 第1章 基础篇

    Web Audio API 第1章 基础篇 我查了一下 Web Audio API 蝙蝠书居然在 2013 年就出版了 我又看了一下我的"豆瓣读书"频道内,这本书加入到" ...

  7. SQL注入的原理与分析

    SQL注入的原理与分析 1.SQL注入的本质 2.部分SQL语句 3.SQL注入流程 一.SQL注入的本质 SQL注入的本质,就是把用户输入的数据当作代码执行 Web应用程序对用户输入的数据校验处理不 ...

  8. 记录--Vue2屎山之 Table 屎山

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前言 Vue2 将在 2023 年年底停止维护了,但是 Vue2 的代码却不会在 2023 年消失,还会越来越多:难以想象几十万行或者几百 ...

  9. 记录--vue+three.js 构建 简易全景图

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 最近几天在学习three.js ,因为我相信只有实践才能出真理,捣鼓捣鼓做了一个简易的全景图,这里主要是分享做这个vue版全景图中遇到的问 ...

  10. 【JVM】关于JVM,你需要知道这些!!

    写在前面 最近,一直有小伙伴让我整理下关于JVM的知识,经过十几天的收集与整理,初版算是整理出来了.希望对大家有所帮助. JDK 是什么? JDK 是用于支持 Java 程序开发的最小环境. Java ...