vjudge链接

原题链接

乍一看似乎没什么思路,但是写几个简单的例子之后规律就变得很明显。

比如当 n=5 时,每一步计算后的结果如下:

a1

a1+a2

a1+2a2+a3

a1+3a2+3a3+a4

a1+4a2+6a3+4a4+a5

显然系数“1, 4, 6, 4, 1”就是杨辉三角第五行。

故某一项的系数是否是题中 m 的倍数,就决定了最终得到的数除以 n 的余数和那一项是否有关。

二项式定理:



从中很容易得到前后两项的关系 C(n, k)=(n-k+1)/k*C(n, k-1) 。但是单纯用这个公式暴力得到每个系数一定会导致溢出,故需要运用唯一分解定理分别存储每个系数的素因数和指数。

一般的代码不难给出,但是一直TLE。最后发觉应该先分解 m ,再得到 m 的素因数在各个 C(n,k) 中的指数,若指数过小则可以提前结束当前的分解。由于 m>1 ,可以忽略 nk 和 n0 的情况。

我的 AC 代码如下,最初是用 ANSI C 写的,一步一步改过来,故非常不简洁。其中用 map 存储素因数,其中元素 -1 用来作为该项是否能被 m 整除的 flag。

/*
*lang C++ 5.3.0
*user Weilin_C
*/
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cstdio>
#include <cmath>
#include <iostream>
#include <iomanip>
#include <algorithm>
#include <sstream>
#include <vector>
#include <map>
//#include <unordered_map>
#include <set>
#include <list>
#include <queue> //每个数用map分质因数存储
//质数用素数筛 2-1000000000, MAXM=1000000
#define MAXM 1000000
#define MAXN 100000+5
using namespace std; map <int, int> sta[MAXN], mm;
int pos[MAXN];
int prime[MAXM+1]; void mtomap (map<int, int> *ma, int n, int p)
{ //解码m n: 解码的数 p: 数n的个数
int num=n;
for (int i=2; i<=MAXM && num>0; i++) {
if (!prime[i]) {
while (num%i==0 && num>0) {
num/=i;
(*ma).insert(pair<int, int>(i, 0));
(*ma)[i]+=p;
}
}
}
if (num>1) (*ma).insert(pair<int, int>(num, 1)); return;
} void ntomap (map<int, int> *ma, int n, int p)
{ //用于逐个解码第n行的杨辉三角 n: 解码的数 p: 数n的个数
map <int, int>::iterator it;
int num=n, t;
if (n<2) return;
for (it=mm.begin(); it!=mm.end(); it++) {
t=it->first;
if (t<2) continue;
(*ma).insert(pair<int, int>(t, 0));
while (num%t==0 && num>0) {
num/=t;
(*ma)[t]+=p;
}
if ((*ma)[t]<it->second) (*ma)[-1]=0;
} return;
} int judge(map<int, int> *ma)
{ //是否为0或1
int flag=0;
map <int, int>::iterator it;
for (it=(*ma).begin(); it!=(*ma).end(); it++)
if (it->second!=0 && it->first!=-1) {
flag=1;
break;
}
return flag;
} int main()
{
int m, n; //freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout); /* C(n, k) = (n-k+1)/k * C(n, k-1) */ for (int i=2; i<=sqrt(MAXM+1); i++) {
if (prime[i]) continue;
for (int j=i+i; j<=MAXM; j+=i) prime[j]=1;
} while (scanf("%d%d", &n, &m)==2) { //n: 杨辉三角层数
//printf("%d %d\n", n, m);
for (int i=0; i<=n; i++) if (!sta[i].empty()) sta[i].clear();
mm.clear();
sta[0][m]=0;
sta[0][-1]=0; mtomap(&mm, m, 1); map <int, int>::iterator it;
for (int i=1; i<n; i++) {
for (it=sta[i-1].begin(); it!=sta[i-1].end(); it++) sta[i][it->first]=it->second;
sta[i][-1]=1;
ntomap(&sta[i], n-i, 1);
ntomap(&sta[i], i, -1);
} pos[0]=0;
int ans=0;
for (int i=0; i<n; i++) {
if (sta[i][-1] && judge(&sta[i])) {
ans++;
pos[++pos[0]]=i+1;
}
}
printf("%d\n", ans);
int f=0;
for (int i=1; i<=pos[0]; i++) {
if (f) putchar(' ');
else f=1;
printf("%d", pos[i]);
}
putchar('\n');
} return 0;
}

by SDUST weilinfox

本文链接:https://www.cnblogs.com/weilinfox/p/12241600.html

Irrelevant Elements UVA-1635 (二项式定理)的更多相关文章

  1. Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理

    /** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...

  2. UVA1635 Irrelevant Elements —— 唯一分解定理 + 二项式定理

    题目链接:https://vjudge.net/problem/UVA-1635 (紫书320) 题解: 1.根据二项式定理, 可得递推公式: C(n,k) = (n-k+1)/k * C(n, k- ...

  3. UVa 1635 - Irrelevant Elements-[分解质因数]

    Young cryptoanalyst Georgie is investigating different schemes of generating random integer numbers ...

  4. POJ2167 Irrelevant Elements

    Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %lld & %llu Description Young cryp ...

  5. POJ 2167 Irrelevant Elements 质因数分解

    Irrelevant Elements Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2231   Accepted: 55 ...

  6. UVa 1635 - Irrelevant Elements(二项式系数 + 唯一分解定理)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVa 1635 (唯一分解定理) Irrelevant Elements

    经过紫书的分析,已经将问题转化为求组合数C(n-1, 0)~C(n-1, n-1)中能够被m整除的个数,并输出编号(这n个数的编号从1开始) 首先将m分解质因数,然后记录下每个质因子对应的指数. 由组 ...

  8. UVA 1635 Irrelevant Elements

    https://vjudge.net/problem/UVA-1635 题意:n个数,每相邻两个求和,最后变成1个数,问这个数除m的余数与第几个数无关 n个数使用次数分别为C(n-1,i) i∈[0, ...

  9. UVa 1635 无关的元素(唯一分解定理+二项式定理)

    https://vjudge.net/problem/UVA-1635 题意: 给定n个数a1,a2,...an,依次求出相邻两数之和,将得到一个新数列.重复上述操作,最后结果将变成一个数.问这个数除 ...

随机推荐

  1. 2016湖南省赛 I Tree Intersection(线段树合并,树链剖分)

    2016湖南省赛 I Tree Intersection(线段树合并,树链剖分) 传送门:https://ac.nowcoder.com/acm/contest/1112/I 题意: 给你一个n个结点 ...

  2. Android studio 使用git仓库记录

    studio 绑定git settings --> verson control -->git 在项目文件目录右击打开git bash here操作界面 查看git项目安装位置 找到id_ ...

  3. Windows 服务安装与卸载 (通过 Sc.exe)

    1. 安装 新建文本文件,重命名为 ServiceInstall.bat,将 ServiceInstall.bat 的内容替换为: sc create "Verity Platform De ...

  4. Android生命周期函数执行顺序

    转载自:http://blog.csdn.net/intheair100/article/details/39061473 程序正常启动:onCreate()->onStart()->on ...

  5. 第二阶段:2.商业需求分析及BRD:5.商业需求文档1

    三大文档 FSD一般包含在PRD 1.BRD一般是去向决策层汇报 2.产品介绍的各项是可选的 不是必备的 产品线路图就是roodmap.团队一般是偏技术的团队. BRD案例. 痛点.定性的描述.不会非 ...

  6. .NET设计篇08-线程取消模型和跨线程访问UI

    知识需要不断积累.总结和沉淀,思考和写作是成长的催化剂,输出倒逼输入 内容目录 一.线程统一取消模型1.取消令牌2.可以中断的线程1.设计一个中断函数2.创建CancellationTokenSour ...

  7. Serverless Kubernetes 入门:对 Kubernetes 做减法

    作者 | 贤维  阿里巴巴高级技术专家 导读:Serverless Kubernetes 是阿里云容器服务团队对未来 Kubernetes 演进方向的一种探索,通过对 Kubernetes 做减法,降 ...

  8. [推荐]icheck-bootstrap(漂亮的ckeckbox/radiobox)

    适用于Twitter Bootstrap框架的纯CSS样式的复选框/单选框按钮的插件. GitHub:https://github.com/bantikyan/icheck-bootstrap 如果你 ...

  9. Go语言教程之结构体

    Hello,大家好,我是小栈君,最近因为工作的事情延误了一点分享的进度,但是我会尽量抽时间分享关于IT干货知识,还希望大家能够持续关注"IT干货栈"哦. 闲话不多说,今天给大家继续 ...

  10. Netty快速入门(08)ByteBuf组件介绍

    前面的内容对netty进行了介绍,写了一个入门例子.作为一个netty的使用者,我们关注更多的还是业务代码.也就是netty中这两种组件: ChannelHandler和ChannelPipeline ...