Hive实践(hive0.12)
版本号:cdh5.0.0+hadoop2.3.0+hive0.12
一、原始数据:
1. 本地数据
[root@node33 data]# ll
total 12936
-rw-r--r--. 1 root root 13245467 May 1 17:08 hbase-data.csv
[root@node33 data]# head -n 3 hbase-data.csv
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
2,1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
3,1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
2. hdfs数据:
[root@node33 data]# hadoop fs -ls /input
Found 1 items
-rwxrwxrwx 1 hdfs supergroup 13245467 2014-05-01 17:09 /input/hbase-data.csv
[root@node33 data]# hadoop fs -cat /input/* | head -n 3
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
2,1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
3,1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
二、创建hive表:
1.hive外部表:
[root@node33 hive]# cat employees_ext.sql
create external table if not exists employees_ext(
id int,
x1 float,
x2 float,
x3 float,
x4 float,
x5 float,
x6 float,
x7 float,
x8 float,
x9 float,
y int)
row format delimited fields terminated by ','
location '/input/'
创建表,client执行 :hive -f employees_ext.sql
2. hive表
[root@node33 hive]# cat employees.sql
create table employees(
id int,
x1 float,
x2 float,
x3 float,
x4 float,
x5 float,
x6 float,
x7 float,
x8 float,
x9 float
)
partitioned by (y int);
创建表,client执行:hive -f employees.sql
3. hive表(orc方式存储)
[root@node33 hive]# cat employees_orc.sql
create table employees_orc(
id int,
x1 float,
x2 float,
x3 float,
x4 float,
x5 float,
x6 float,
x7 float,
x8 float,
x9 float
)
partitioned by (y int)
row format serde "org.apache.hadoop.hive.ql.io.orc.OrcSerde"
stored as orc;
执行:hive -f employees_orc.sql
三、导入数据:
1. employees_ext 表导入employees表:
[root@node33 hive]# cat employees_ext-to-employees.sql
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.eec.max.dynamic.partitions.pernode=1000;
insert overwrite table employees
partition(y)
select
emp_ext.id,
emp_ext.x1,
emp_ext.x2,
emp_ext.x3,
emp_ext.x4,
emp_ext.x5,
emp_ext.x6,
emp_ext.x7,
emp_ext.x8,
emp_ext.x9,
emp_ext.y
from employees_ext emp_ext;
执行:hive -f employees_ext-to-employees.sql。其部分log例如以下:
Partition default.employees{y=1} stats: [num_files: 1, num_rows: 0, total_size: 3622, raw_data_size: 0]
Partition default.employees{y=2} stats: [num_files: 1, num_rows: 0, total_size: 4060, raw_data_size: 0]
Partition default.employees{y=3} stats: [num_files: 1, num_rows: 0, total_size: 910, raw_data_size: 0]
Partition default.employees{y=5} stats: [num_files: 1, num_rows: 0, total_size: 699, raw_data_size: 0]
Partition default.employees{y=6} stats: [num_files: 1, num_rows: 0, total_size: 473, raw_data_size: 0]
Partition default.employees{y=7} stats: [num_files: 1, num_rows: 0, total_size: 13561851, raw_data_size: 0]
Table default.employees stats: [num_partitions: 6, num_files: 6, num_rows: 0, total_size: 13571615, raw_data_size: 0]
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 6.78 sec HDFS Read: 13245660 HDFS Write: 13571615 SUCCESS
Total MapReduce CPU Time Spent: 6 seconds 780 msec
OK
Time taken: 186.743 seconds
查看hdfs文件大小:
[root@node33 hive]# hadoop fs -count /user/hive/warehouse/employees
7 6 13571615 /user/hive/warehouse/employees
查看hdfs文件内容:
bash-4.1$ hadoop fs -cat /user/hive/warehouse/employees/y=1/* | head -n 1
11.5210113.644.491.171.780.068.750.00.0
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvZmFuc3kxOTkw/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="" />
(截图的内容为输出,拷贝到代码块里面有问题)
2. employees_ext 表导入employees_orc表:
[root@node33 hive]# cat employees_ext-to-employees_orc.sql
set hive.exec.dynamic.partition=true;
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.eec.max.dynamic.partitions.pernode=1000;
insert overwrite table employees_orc
partition(y)
select
emp_ext.id,
emp_ext.x1,
emp_ext.x2,
emp_ext.x3,
emp_ext.x4,
emp_ext.x5,
emp_ext.x6,
emp_ext.x7,
emp_ext.x8,
emp_ext.x9,
emp_ext.y
from employees_ext emp_ext;
执行:hive -f employees_ext-to-employees_orc.sql,其部分log例如以下:
Partition default.employees_orc{y=1} stats: [num_files: 1, num_rows: 0, total_size: 2355, raw_data_size: 0]
Partition default.employees_orc{y=2} stats: [num_files: 1, num_rows: 0, total_size: 2539, raw_data_size: 0]
Partition default.employees_orc{y=3} stats: [num_files: 1, num_rows: 0, total_size: 1290, raw_data_size: 0]
Partition default.employees_orc{y=5} stats: [num_files: 1, num_rows: 0, total_size: 1165, raw_data_size: 0]
Partition default.employees_orc{y=6} stats: [num_files: 1, num_rows: 0, total_size: 955, raw_data_size: 0]
Partition default.employees_orc{y=7} stats: [num_files: 1, num_rows: 0, total_size: 1424599, raw_data_size: 0]
Table default.employees_orc stats: [num_partitions: 6, num_files: 6, num_rows: 0, total_size: 1432903, raw_data_size: 0]
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 7.84 sec HDFS Read: 13245660 HDFS Write: 1432903 SUCCESS
Total MapReduce CPU Time Spent: 7 seconds 840 msec
OK
Time taken: 53.014 seconds
查看hdfs文件大小:
[root@node33 hive]# hadoop fs -count /user/hive/warehouse/employees_orc
7 6 1432903 /user/hive/warehouse/employees_orc
查看hdfs文件内容:
3. 比較两者性能
时间 | 压缩率 | |
employees表: | 186.7秒 | 13571615/13245660=1.0246 |
employees_orc表: | 53.0秒 | 1432903/13245660=0.108 |
时间上来说,orc的表现方式会好非常多。同一时候压缩率也好非常多。
只是,这个測试是在本人虚拟机上測试的,并且是单机測试的,所以參考价值不是非常大,可是压缩率还是有一定參考价值的。
四、导出数据
1. employees表:
[root@node33 hive]# cat export_employees.sql
insert overwrite local directory '/opt/hivedata/employees.dat'
row format delimited
fields terminated by ','
select
emp.id,
emp.x1,
emp.x2,
emp.x3,
emp.x4,
emp.x5,
emp.x6,
emp.x7,
emp.x8,
emp.x9,
emp.y
from employees emp
执行:hive -f export_employees.sql
部分log:
MapReduce Total cumulative CPU time: 9 seconds 630 msec
Ended Job = job_1398958404577_0007
Copying data to local directory /opt/hivedata/employees.dat
Copying data to local directory /opt/hivedata/employees.dat
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 9.63 sec HDFS Read: 13572220 HDFS Write: 13978615 SUCCESS
Total MapReduce CPU Time Spent: 9 seconds 630 msec
OK
Time taken: 183.841 seconds
数据查看:
[root@node33 hive]# ll /opt/hivedata/employees.dat/
total 13652
-rw-r--r--. 1 root root 13978615 May 2 05:15 000000_0
[root@node33 hive]# head -n 1 /opt/hivedata/employees.dat/000000_0
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0.0,0.0,1
2. employees_orc表:
[root@node33 hive]# cat export_employees_orc.sql
insert overwrite local directory '/opt/hivedata/employees_orc.dat'
row format delimited
fields terminated by ','
select
emp.id,
emp.x1,
emp.x2,
emp.x3,
emp.x4,
emp.x5,
emp.x6,
emp.x7,
emp.x8,
emp.x9,
emp.y
from employees_orc emp
执行 hive -f export_employees_orc.sql
部分log:
MapReduce Total cumulative CPU time: 4 seconds 920 msec
Ended Job = job_1398958404577_0008
Copying data to local directory /opt/hivedata/employees_orc.dat
Copying data to local directory /opt/hivedata/employees_orc.dat
MapReduce Jobs Launched:
Job 0: Map: 1 Cumulative CPU: 4.92 sec HDFS Read: 1451352 HDFS Write: 13978615 SUCCESS
Total MapReduce CPU Time Spent: 4 seconds 920 msec
OK
Time taken: 41.686 second
查看数据:
[root@node33 hive]# head -n 1 /opt/hivedata/employees_orc.dat/000000_0
1,1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0.0,0.0,1
[root@node33 hive]# ll /opt/hivedata/employees_orc.dat/
total 13652
-rw-r--r--. 1 root root 13978615 May 2 05:18 000000_0
这里的数据和原始数据的大小不一样。原始数据是13245467, 而导出到本地的是13978615 。这是由于数据的精度问题,比如原始数据中的0都被存储为了0.0。
分享,成长。快乐
转载请注明blog地址:http://blog.csdn.net/fansy1990
Hive实践(hive0.12)的更多相关文章
- hive-0.12升级成hive 0.13.1
安装了0.12之后,听说0.13.1有许多新的特性,包括永久函数,所以想更新成0.13版的(元数据放在mysql中) 2014年8月5日实验成功 hive0.13.1的新特性 新特性详见 http:/ ...
- hbase0.96与hive0.12整合高可靠文档及问题总结
本文链接:http://www.aboutyun.com/thread-7881-1-1.html 问题导读:1.hive安装是否需要安装mysql?2.hive是否分为客户端和服务器端?3.hive ...
- Hadoop2.2.0 hive0.12 hbase0.94 配置问题记录
环境:centos6.2 Hadoop2.2.0 hive0.12 hbase0.94 1>hadoop配好之后,跑任务老失败,yarn失败,报out of memory错误,然后怎么调整内存大 ...
- 在Hadoop1.2.1分布式集群环境下安装hive0.12
在Hadoop1.2.1分布式集群环境下安装hive0.12 ● 前言: 1. 大家最好通读一遍过后,在理解的基础上再按照步骤搭建. 2. 之前写过两篇<<在VMware下安装Ubuntu ...
- Hadoop2.3+Hive0.12集群部署
0 机器说明 IP Role 192.168.1.106 NameNode.DataNode.NodeManager.ResourceManager 192.168.1.107 Secondary ...
- Caused by: org.xml.sax.SAXParseException; systemId: file:/home/hadoop/hive-0.12.0/conf/hive-site.xml; lineNumber: 5; columnNumber: 2; The markup in the document following the root element must be well
1:Hive安装的过程(Hive启动的时候报的错误),贴一下错误,和为什么错,以及解决方法: [root@master bin]# ./hive // :: INFO Configuration.de ...
- hive-0.12.0-cdh5.1.0安装
先前条件: 要先安装好MYSQL 下载:hive-0.12.0-cdh5.1.0.tar.gz,并解压到安装目录 1. 添加环境变量 修改/etc/profile文件. #vi /etc/profil ...
- 黑盒测试实践--Day7 12.1
黑盒测试实践--Day7 12.1 今天完成任务情况: 录制小组作业中的自动化测试工具实践视频 汇总大家提交的各种作业模块,打包完成小组共同作业 小组成员完成个人情况说明后在截止时间前分别提交作业 小 ...
- 敏捷软件开发:原则、模式与实践——第12章 ISP:接口隔离原则
第12章 ISP:接口隔离原则 不应该强迫客户程序依赖并未使用的方法. 这个原则用来处理“胖”接口所存在的缺点.如果类的接口不是内敛的,就表示该类具有“胖”接口.换句话说,类的“胖”接口可以分解成多组 ...
随机推荐
- Java不可变对象
在创建状态后无法更改其状态的对象称为不可变对象.一个对象不可变的类称为不可变类.不变的对象可以由程序的不同区域共享而不用担心其状态改变. 不可变对象本质上是线程安全的. 示例 以下代码创建了不可变类的 ...
- Django Paginator分页器
如何实现在django中实现分页效果,我使用的是django自带的分页器paginator具体是使用办法是这样的首先引用from django.core.paginator import Pagina ...
- UML指南系列——用例图
可以用用例来描述正在开发的系统想要实现的行为,而不必说明这些行为如何实现. 结构良好的用例只表示系统或者子系统的基本行为,而且既不过于笼统也不过于详细.
- Python之循环遍历
range() 快输生成序列 利用 items()提取字典元素 在Python里,for循环后面是可以接一个else 的,在for循环正常结束时候,else 语句会被执行(while循环也是一样哦), ...
- 2019-8-31-matlab-画图
title author date CreateTime categories matlab 画图 lindexi 2019-08-31 16:55:59 +0800 2018-2-13 17:23: ...
- 总结下awk基本用法
命令格式: awk '{commands} [{other commands}]' awk 'condition{commands} [{other commands}]' 如:awk '$4==&q ...
- 通过list中值得名称查询索引号
>>> a = ['www','iplaypython','com']>>> a.index('iplaypython')
- [转载]图文详解YUV420数据格式
原博主的博客为:https://www.cnblogs.com/azraelly/archive/2013/01/01/2841269.html YUV格式有两大类:planar和packed.对于p ...
- Eclipse中发布Maven管理的Web项目时找不到类的问题根源和解决办法(转)
转自:http://blog.csdn.net/lvguanming/article/details/37812579?locationNum=12 写在前面的话 现在是越来越太原讨厌Eclipse这 ...
- leetcood学习笔记-35-二分法
题目: 第一次提交; class Solution: def searchInsert(self, nums: List[int], target: int) -> int: for i in ...