OpenCV离散傅里叶变换
离散傅里叶变换
- 作用:得到图像中几何结构信息
- 结论:傅里叶变换后的白色部分(即幅度较大的低频部分),表示的是图像中慢变化的特性,或者说是灰度变化缓慢的特性(低频部分)。
傅里叶变换后的黑色部分(即幅度低的高频部分),表示图像中快变化的特性,或者说是灰度变化快的特性(高频部分)。
dft()函数
函数原型
void dft(InputArray src, OutputArray dst, int flage=0, int nonzeroRow=0)
- InputArray 类型的src。输入矩阵,可以为实数或者虚数。
- OutputArray 类型的dst。函数调用后的运算结果存在这里,其尺寸取决于标识符,也就是第三个参数。
- int 类型的falgs。转换的标识符,有默认值0,取值可以为表中的结合。
标识符名称 | 意义
-|
DFT_INVERSE | 用一维或二维逆变换代替默认的正向变换。
DFT_SCALE | 缩放比例标识符,输出的结果都会以1/N进行放缩,通常擦很难过会结合DFT_INVERSE一起使用。
DFT_ROWS | 对输入矩阵的每行进行正向或反向的变换,此标识符可以在处理多种矢量的时候用于减小资源的开销,这些处理常常是三维或高位变换等复杂操作
DFT_COMPLEX_OUTPUT | 进行一维或二维复数苏胡祖反变换。这样的结果通常是一个大小相同的复矩阵。如果输入的矩阵有复数的共轭对称性(比如是一个带有DEF_COMPLEX_OUTPUT标识符的正变换结果),便会输出实矩阵。
- int 类型的nonzeroRows,有默认值0.当此参数设为非零时(最好是取值为想要处理的那一行的值,比如C。rows),函数会假设只有输入矩阵的第一个非零行包含非零元素(没有设置DFT_INVERSE标识符),或只有输出矩阵的一个非零行包含非零元素(设置了DFT_INVERSE标识符)。这样的话,函数就可对其他行进行更高效的处理,以节省时间开销。
返回DFT最优尺寸大小:getOptimalDFTSize()函数
函数原型
int getOptimalDFTSize(int vecsize)
- int 类型的vecsize,向量尺寸,即图片的rows、cols。
扩充图像边界:copyMakeBorder()函数
函数原型
void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, const Scalar& value=Scalar())
- InputArray 类型的src,输入图像,即源图像,填Mat类型的对象即可。
- OutputArray 类型的dst,函数调用后的运算结果存在这里,即这个参数用于存放函数调用后的输出结果,需和源图片有一样的尺寸和类型,且size 应该为Size(src.cols+left+right , src.rows+top+bottom)。
- 接下来的4个参数分别是为int 类型的top、bottom、left、right,分别表示在源图像的四个方向上填充多少像素。
- 第七个参数,int 类型的 borderType,边界类型,常见取值为BORDER_CONSTANT,可参考borderInterpolate()得到更多细节。
- 第八个参数,const Scalar& 类型的value,有默认值Scalar(),可以理解为默认值为0。当borderType取值为BORDER_CONSTANT时,这个参数表示边界值。
计算二维矢量的幅值:magnitude()函数
函数原型
void magnitude(InputArray x, InputArray y, OutputArray magnitude)
- InputArray 类型的x,表示矢量的浮点型X坐标值,也就是实部。
- InputArray 类型的y,表示矢量的浮点型Y坐标值,也就是虚部。
- OutputArray 类型的magnitude,输出的幅值,它和第一个参数x有着同样的尺寸和类型。
计算自然对数:log()函数
计算数组元素绝对值的自然对数
函数原型
void log(InputArray src, OutputArray dst)
- 输入图像
- 得到的对数值
矩阵归一化:normalize()函数
函数原型
void normalize(InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray())
- InputArray 类型的src。输入图像,即源图像,填Mat类的对象即可。
- OutputArray 类型的dst。函数调用后的运算结果。和源图片有一样的尺寸和类型。
- double 类型的alpha。归一化后的最大值,默认值1。
- double 类型的beta。归一化后的最小值,默认值0。
- int类型的norm_type。归一化类型,有NORM_INF、NORM_L1、NORM_L2和NORM_MINMAX等参数可选,有默认值NORM_12。
- int 类型的dtype,有默认值-1。当参数去负值时,输出矩阵和src有同样的类型,否则,它和src有同样的通道数,且此时图像深度为CV_MAT_DEPTH (dtype)。
- InputArray 类型的mask,可选的操作掩膜,有默认值noArray()。
综合示例
#include<core.hpp>
#include<imgproc.hpp>
#include<highgui.hpp>
#include<iostream>
using namespace cv;
using namespace std;
int main()
{
// 1.以灰度模式读取
Mat srcImage = imread("..//..//0.jpg",0);
if (!srcImage.data)
{
printf("读入错误");
return false;
}
imshow("原始图像", srcImage);
// 2.将输入图像延扩到最佳尺寸,边界用0补充
int m = getOptimalDFTSize(srcImage.rows);
int n = getOptimalDFTSize(srcImage.cols);
// 将添加的像素初始化为0。
Mat padded;
copyMakeBorder(srcImage, padded, 0, m - srcImage.rows, 0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0));
// 3.为傅里叶变换的结果(实部和虚部)分配空间。
// 将planes数组组合合并成一个多通道的数组complexI
Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(),CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
// 4.进行离散傅里叶变换
dft(complexI, complexI);
// 5.将复数转换为幅值,即 log(1+sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)
split(complexI, planes); //将多通道数组complexI分离成几个单通道数组,[0]=Re,[1]=Im
magnitude(planes[0], planes[1], planes[0]); //planes[0] = magnitude
Mat magnitudeImage = planes[0];
// 6.进行对数尺度(logarithmic scale)缩放
magnitudeImage += Scalar::all(1);
log(magnitudeImage, magnitudeImage); //求自然对数
// 7.剪切和重分布幅度图象限
//若有奇数行或奇数列,进行频谱裁剪
magnitudeImage = magnitudeImage(Rect(0, 0, magnitudeImage.cols & -2, magnitudeImage.rows & -2));
// 重新排列傅里叶图像中的象限,使得原点位于图像中心
int cx = magnitudeImage.cols / 2;
int cy = magnitudeImage.rows / 2;
Mat q0(magnitudeImage, Rect(0, 0, cx, cy)); //ROI区域的左上
Mat q1(magnitudeImage, Rect(cx, 0, cx, cy)); //ROI区域的右上
Mat q2(magnitudeImage, Rect(0, cy, cx, cy)); //ROI区域的左下
Mat q3(magnitudeImage, Rect(cx, cy, cx, cy)); //ROI区域的右下
//交换象限(左上与右下进行交换)
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
//交换象限(右上与左下进行交换)
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
// 8.归一化,用0到1之间的浮点值将矩阵变换为可视化的图像格式
normalize(magnitudeImage, magnitudeImage, 0, 1, NORM_MINMAX);
// 9.显示效果图
imshow("频谱幅值", magnitudeImage);
waitKey();
return 0;
}
OpenCV离散傅里叶变换的更多相关文章
- Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)
我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...
- opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)
离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" ...
- 离散傅里叶变换(DFT)
目录 一.研究的意义 二.DFT的定义 三.DFT与傅里叶变换和Z变换的关系 四.DFT的周期性 五.matlab实验 五.1 程序 ...
- opencv3.2.0图像离散傅里叶变换
源码: ##名称:离散傅里叶变换 ##平台:QT5.7.1+opencv3.2.0 ##日期:2017年12月13. /**** 新建QT控制台程序****/ #include <QCoreAp ...
- c语言数字图像处理(六):二维离散傅里叶变换
基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...
- 五、c++实现离散傅里叶变换
C++离散傅里叶变换 一.序言: 该教程基于之前的图像处理类MYCV,是对其的补充. 二.设计目标 对图像进行简单的离散傅里叶变换,并输出生成的频谱图. 三.需要提前掌握的知识 二维傅里叶变换公式: ...
- 用matlab脚本语言写M文件函数时用三种方法简单实现实现DFT(离散傅里叶变换)
%用二重循环实现DFT: function xk=dt_0(xn); %define a function N=length(xn); %caculate the length of the vari ...
- 灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)
学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...
- 【转】离散傅里叶变换-DFT(FFT)基础
转:https://blog.csdn.net/zhangxz259/article/details/81627341 什么是离散傅里叶变换 matlab例子 本文是从最基础的知识开始讲解,力求用最通 ...
随机推荐
- Java设计模式(三)简单工厂模式
定义与类型 定义:由一个工厂对象决定创建出哪一种产品类的实例 类型:创建型,但不属于GOF23种设计模式 适用场景 工厂类负责创建的对象比较少 客户端(应用层)只知道传入工厂类的参数,对于如何创建对象 ...
- 自主开发编程语言被指Python套壳,中科院开发者道歉
中科院计算所团队“完全自主设计.开发和实现”的“木兰”编程语言是Python语言的套壳产品?针对近日这一网络质疑,1月17日,项目负责人.中科院计算所编译实验室员工刘雷在科学网上发表回应称,木兰语言在 ...
- 三分钟学会.NET Core Jwt 策略授权认证
一.前言 大家好我又回来了,前几天讲过一个关于Jwt的身份验证最简单的案例,但是功能还是不够强大,不适用于真正的项目,是的,在真正面对复杂而又苛刻的客户中,我们会不知所措,就现在需要将认证授权这一块也 ...
- Query的选择器
Query的选择器 一. 基本选择器 1. ID选择器 ID选择器#id就是利用DOM元素的id属性值来筛选匹配的元素,并以iQuery包装集的形式返回给对象. ...
- jQuery---手风琴案例
手风琴案例 <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF ...
- C 库函数 - modf()
C 库函数 - modf() C 标准库 - <math.h> 描述 C 库函数 double modf(double x, double *integer) 返回值为小数部分(小数点后的 ...
- R语言函数化编程笔记2
R语言函数化编程笔记2 我学过很多的编程语言,可以我写的代码很啰嗦,一定是我太懒了.或许是基础不牢地动山摇 1.为什么要学函数 函数可以简化编程语言,减少重复代码或者说面向对象的作用 2.函数 2.1 ...
- ST表求区间最值
#include<bits/stdc++.h> #define ll long long #define lowbit(x) x&-x using namespace std; ; ...
- Verilog-异步FIFO
参考博文:https://blog.csdn.net/alangaixiaoxiao/article/details/81432144 1.概述 异步FIFO设计的关键是产生“写满”和“读空”信号,这 ...
- 剑指offer 39. 是否为平衡二叉树
39. 是否为平衡二叉树 题目描述 输入一棵二叉树,判断该二叉树是否是平衡二叉树 任意结点的左右子树高度差不大于1就是平衡二叉树. C++解法 class Solution { public: boo ...